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ABSTRACT. - We study the homogenization of Dirichlet problems for a
fixed quasi-linear operator which is the perturbation of the Laplace operator
by the square of the gradient, when the domain varies arbitrarily. With
respect to the Dirichlet problem for the linear Laplace operator posed
on the same domains, a new nonlinear zeroth order term appears in the
homogenized problem. We also give a corrector result.

Key words : Quasi-linear problem, perforated domain.

RESUME. - On etudie l’homogénéisation de problemes de Dirichlet pour
un operateur quasi-lineaire fixe qui est la perturbation de Foperateur de
Laplace par le carre du gradient, pour une suite de domaines qui varient
arbitrairement. Par rapport au probleme de Laplace avec des conditions
de Dirichlet pose sur les memes domaines, il apparait un nouveau terme
non-lineaire d’ordre zero dans le probleme homogeneise. On obtient aussi
un resultat de correcteur.

INTRODUCTION

We consider in the present paper the following homogenization problem:
Let SZn be a sequence of open sets which are included in a fixed bounded
open set 0 of For E R, (A > 0) and for f E L°° (SZ), we consider
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670 J. CASADO-DfAZ

the solution un of the problem:

The existence of a solution for this type of problems has been proved in
[4] and its uniqueness in [1] ] (In the present case, it can also easily be
obtained by the change of unknown fontion (0.5) below). It is also shown
in [4] that the norm of in n is a bounded sequence
in I~. Identifying the function un with its extension by zero in 0 B On,
we conclude that Un is a bounded sequence in n L°° (SZ) and so,
extracting a subsequence, we deduce that Un converges to a function u,
weakly in and weakly-* in L°° ( SZ ) . Our problem is to find the
equation satisfied by the function u.
The answer to this homogenization problem is well known in the linear

case (see [9], [ 11 ], [12], [10]) where the problem satisfied by un is now

In this linear case, un is still bounded in and there exists a

nonnegative measure p which vanishes on the sets of zero capacity such
that un converges in weakly to the unique solution u of the
homogenized equation

In the case where J1 is a Radon measure, the functions of D(S2) belong to
This implies that the solution of (0.3) satisfies

Therefore, the problem satisfied by the function u is not yet (0.2), and a
new term, j1U, appears. Let us emphasize that this term only depends on the
values of u, and not of its gradient. It is moreover linear with respect to u.
To carry out the homogenization of (0.1), the idea is to make the change

of unknown function
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671A QUASI-LINEAR PROBLEM IN PERFORATED DOMAINS

The new problem we obtain is nothing but

in which we can pass to the limit using the result of the linear case. Coming
back to the old unknown functions, we will prove that the function u now
satisfies the homogenized equation

In the case where ~ is a Radon measure, the solution of (0.6) satisfies

As in the linear case, there is here a new term (e~’u - 1 ) ~c/ (~ye~’~‘ ) (J1 is

the same measure as in the linear case), which depends only on the values
of u, but it is no more linear. This means that the perturbation of the
linear problem (0.2) by a nonlinear term of the form ~y ~ ~ un ( 2 changes the
structure of the new term in the limit equation.

This result is proved in Section 2 below. The same result is proved in [6]
in the case in which the nonlinear perturbation of (0.2) is a general function
of the form H(x, u, V u), where H has a (at most) quadratic growth in the
gradient variable. In this case the homogenized equation reads as

Note that as in (0.7) the nonlinear perturbation H(x, u) remains the
same after passing at the limit, but that a new term, g(x, appears,
which is no more explicit but involves the measure J1 and a new function
g(x, u) which results from the interaction of the homogenization and of
the nonlinear perturbation. (In this paper, [6], we restrict ourselves for the
sake of simplicity to the case where the measure p which appears in (0.3)
and (0.4) is a Radon measure.)

Vol. 14, n° 5-1997.



672 J. CASADO-DIAZ

In Section 3 below we obtain a corrector result, i. e. an approximation (or
more exactly a representation) of ~un in the strong topology of L2(O)d.
Indeed, we establish (see Theorem 3.1) the existence of a sequence of
Caratheodory functions Fn : H x IRd such that

For the linear problem (0.2) a similar result is well known to hold (see for
example [9], [10], [5]). In this case the functions are linear in s,
which is no more the case for problem (0.1).

In Section 4, we compare the homogenization problem (0.1) (in which
the open set is varying) with the following homogenization problem (in
which the coefficients of the equation are varying)

where An = is a sequence of matrices which H-converges to a
matrix A (see [21] for the definition of H-convergence) and where H(x, ~)
is a Caratheodory function with a quadratic growth in ~ (for example
H(~~ ~) _ .~(~) + ’Y~~~2~ f E LOO(f2)).
The homogenization of (0.9) has been studied in [2] (see also [3]). In that

case |0394un|2 is equi-integrable and this plays a very important role in the
proof. In constrast, the sequence |0394un|2 is not equi-integrable in problem
(0.1), which explains why the homogenized problems obtained from (0.1)
and (0.9) are very differents.

1. PRELIMINARIES

In this Section, we recall some results concerning the homogenization of
the linear problem (0.2) in varying domains, which will be used in the next
Section to homogenize the quasi-linear problem (0.1). The homogenization
of the linear problem (0.2) has been studied by many authors, see for
example [9], [ 11 ], [10]. The results presented here are mostly due to G.
Dal Maso and A. Garroni, [10] (see also [13], [14] and [8]).

Consider a sequence f2n of arbitrary open sets which are included in a
bounded open set f2 of IRd. In order to define them on the fixed open set
H, the functions of ~o ( S2n ) will always be extended by zero in 
So, they will be considered as elements of Ho (SZ). Define the function 
as the solution of the problem

Annales de l’Institut Henri Poincaré - Analyse non linéaire



673A QUASI-LINEAR PROBLEM IN PERFORATED DOMAINS

It is easy to prove that Wn is bounded in It can also be proved that

for some constant M. Therefore there exists a subsequence (that for the sake
of simplicity, we will still denote by n) and some w G such that vy

converges weakly in to w. Define a distribution v E by

It can be proved by the maximum principle that the distribution v is

a nonnegative Radon measure in H. Define finally for every Borel set

B C !1, the Borel measure p by .

where cap(A) denotes the capacity of the set A with respect to H, which
is defined in the following way: If A is a compact set, the capacity of
A is defined by .

If A is an open set, the capacity of A is defined by

If A is an arbitrary set, the capacity of A is defined by

By definition J1 vanishes on the Borel sets of zero capacity. It is well known
(see e.g. [16], [23], [15]) that a function of has a representative
which is defined quasi-everywhere (q.e.), i.e. defined except on a set of
zero capacity. We will always use this representative for the functions of

which are thus defined J1 almost everywhere. It can be shown (see
[10]) that the function w and the measure p are related by

Vol. 14, n° 5-1997.



674 J. CASADO-DIAZ

With these definitions, G. Dal Maso and A. Garroni ([10]) have shown the
following homogenization result for the linear problem (0.2):

THEOREM l.l. - Consider a sequence fn of which converges to
some f strongly in Let un be the solution of the problem

Then (the whole sequence) ~n converges weakly in Ho (SZ) and strongly in
1  p  2, to the unique solution u of the problem

REMARK 1.1. - The problem satisfied by the limit u is similar to the

problem satisfied by the function but a new term, J1U, appears. This is

the "strange term" in the terminology of D. Cioranescu and F. Murat ([9]).
However, if, following G. Dal Maso and U. Mosco ([ 11 ], [12]), we define
for every Borel set B ~ 03A9 the measures J1n by

problem (1.5) can be written in a form similar to (1.6), i. e.

Let us conclude this Section by recalling the corrector result for the
linear problem (0.2) (or ( 1.5)). The following theorem has been established
in [10] (see also [9], [13], [14], [5] and [8] for related results).

THEOREM 1.2. - Let ur,,; u, fn and f be as in Theorem l.l, with f in
Define Rn by

Then the sequence Rn converges strongly to zero in 

Anriales de l’Institut Henri Poincaré - Analyse non linéaire



675A QUASI-LINEAR PROBLEM IN PERFORATED DOMAINS

REMARK 1.2. - An important step in the proof of Theorem 1.2, which
we will use below, is to note that

a result which is easily proved by the maximum principle, using (1.4) and
(1.6). In view of (1.10) it is clear that ~ belongs to E S2 : w(x) >

and thus that u w~ (wn -wj and Rn belong to L2 ( {x w( x) > 0}).
From (1.10), we deduce that

For our purpose, it is better to modify in Theorem 1.2 the sequence Wn
and to replace it by another sequence wn which is defined by

which has the advantage that

Using the sequence wn, we have

LEMMA 1.1. - Let un, u, f n and f be as in Theorem 1.2. Then the

sequence defined by

belongs to n and satisfies

Proof - From (1.10) and (1.13), it is clear that Un E and satisfies

(1.15) and ( 1.16).For ~ > 0 define icn by

Vol. 14, n° 5-1997.



676 J. CASADO-DIAZ

The sequence icn belongs to and converges pointwise to when

6- tends to zero. Its gradient is

By (1.10), (1.13) and the Lebesgue’s dominated convergence theorem, ~u~n
converges strongly in when e tends to zero, to the expression of

given in (1.17). Therefore, we conclude that Un belongs to 
and that its gradient is given by (1.17). a
We have now in position to establish the following version of the

corrector result (compare with Theorem 1.2).

THEOREM 1.3. - Let u, in and f be as in Theorem 1.2 and let ur,,
be defined by (1.14). Define r~ and Rn by

Then the sequences rn and I~n converge strongly to zero in Ho (SZ) and
respectively.

Proof. - Let us first prove that

Since wn = Wn - (wn - w)+, it is enough to prove that (w~z - w)+
converges to zero in The function (wn - w)+ belongs to HJ(nn)
and is thus an admisible test function for (1.1). This yields

Since (wn - w)+ converges weakly to zero in Ho (SZ) it is also clear that

Taking the difference of ( 1.22) and ( 1.23), we have proved ( 1.21 ).

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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Let now ~c, In and f be as in Theorem 1.2. In view of the definitions
(1.9) and (1.20) of Rn and Rn, and of Theorem 1.2, it is enough, in order
to prove that Rn converges strongly to zero in to show that

which easily follows from (1.10) and (1.21).

Using (1.17) and (1.20), we have

By the strong convergence to zero in of (1.10), (1.13) and the
Lebesgue’s dominated convergence theorem, the right-hand side converges
strongly in L2(n)d to zero. This proves the strong convergence of Tn to
zero in 

We complete this Section with the following lemma which will be used
later.

LEMMA 1.2. - ([8], see also [11], [9], [5]). If un E converges

weakly in Ho ( SZ ) to a function u, then u E L~ ( SZ ) .

2. HOMOGENIZATION OF THE NONLINEAR PROBLEM (0.1)

In this Section, we use Theorem 1.1 to pass to the limit in (0.1). Assume
that nn is such that, for the whole sequence n, the solution wn of (1.1)
converges weakly in to a function w and define ~c by (1.3).

THEOREM 2.1. - Let be real constants with ~ > 0. For any f E L°° (SZ),
define un as the unique solution. of the problem~

Vol. 14, nO 5-1997.
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Then, the sequence converges weakly in I~o ( SZ ), weakly-* in L°° ( SZ ) and
strongly in W 1 ~p ( SZ ), 1 C p  2, to the unique solution ~c of the problem

Proof - It has been shown in [4] that (2.1) has a (at least) solution
(this solution is proved in [1] ] to be unique) and that the norm of Un in
Ho n L°°(S~n) is bounded. Indeed, it follows from an estimate along
the lines of the maximum principle (see [4]) that

while the HJ (nn) estimate is more difficult to state. Actually, in the

present case, the change of unknown function (2.4), which will be used
below, allows one to retrieve these existence and boundedness results in
a simple way. These estimates imply the existence of a subsequence of
n (still denoted by n) such that Un converges weakly in and

weakly-* in to a function u, which by Lemma 1.2 belongs to
n n An argument similar to the one used in [1]

implies that problem (2.2) has a unique solution. This uniqueness result
implies that it is not necessary to extract any subsequence of n whenever
U is proved to satisfy (2.2).

Define the function zn by

Using (2.3), we have the following estimate for 

Note that zn E n From

and from (2.4), we deduce that

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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while

We therefore deduce from (2.1) that for every v E Ho(S2.,t) n 
one has

Using v = + with cp E n (this function v

belongs to n as test function in (2.7), we obtain

Using (2.8) it is now easy to show that zn is bounded in (which also
follows from Un bounded in Ho (S2n)). Indeed, taking c~ = zn in (2.8) gives

which, together with (2.5) implies that ]) is

bounded.

Rellich-Kondrachov’s theorem, (2.5), and Lebesgue’s dominated

convergence theorem imply that the sequence (1 + zn ) (~y f - ~ log( 1 + zn ) )
converges strongly in to the function (1 + + z) ),
where z = e’U - 1 (see (2.4)). Therefore Theorem 1.1 applied to (2.8)
implies that the function z is solution of

Using v = with n n as test function

in (2.9) implies that u satisfies (2.2), which finishes the proof.

Vol. 14, n° 5-1997.



680 J. CASADO-DIAZ

REMARK 2.1. - If 03B3 = 0, Theorem 1.1 applied to Problem (2.1) implies
that u satisfies

In fact

and Theorem 2.1 is thus consistent with Theorem 1.1.

3. CORRECTOR

The aim of this Section is to prove the following corrector result.

THEOREM 3.1. - In the framework of Theorem 2.1, let u, wn
and w be respectively defined by (2.1 ), (2.2), ( 1.1 ), ( 1.12) and ( 1.4). Define
R~ and rn by

Then the sequences rn and Rn converge strongly to zero in Ho ( SZ ) and
respectively.

REMARK 3.1. - From ( 1.13) and (2.5), we deduce that

Therefore, the logarithm in (3.1) and the denominator in (3.2) are well
defined. Here the use of wn in place of wn proves to be useful.

Proofof Theorem 3 .1. - To simplify the notation, let us denote by On any
sequence of functions of which can change from a line to another,
such that On converges strongly to zero in We want to prove in

particulat that Rn defined by (3.2) is such an On.

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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First step. - Since zn satisfies (2.8), and since ( 1-E- zn ) (-y f - ~ log ( 1-f-- zn ) )
is bounded in Theorem 1.3 implies that defining rn and Rn by

the sequences r~ and Rn converge strongly to zero in and 

respectively. By (1.10), we also know that there exists a constant C > 0
such that

and by Lemma 1.1, that the function zn defined by

belongs to n 

Using (2.6), and taking into account (2.5), we deduce from (3.5) that

w(x) > 0~

while on {x w(x) = 0~

Second step. - We will now improve (3.7) by removing Indeed,
in order to prove that Rn defined by (3.2) converges strongly to zero in

L2 (~2)d, it is enough to show that

Vol. 14, n° 5-1997.
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By (3.6), (2.5) and (3.3) we have on {x w(x) > 0~

Thus

where in the last equality, we use the fact that the sequence Tn is bounded
in L°° ( SZ) . It is then enough to show that

Third step. - Proof of (3.8).

Since wn and rn belong to n the function rnwn
belongs to Ho (SZn ) . We can therefore use it as test function in ( 1.1 ) or
more exactly in

We obtain

Using Rellich-Kondrachov’ s theorem, the fact that wn and rn are bounded
in and that Tn and wn - wn converge strongly to zero in 
(see (1.21)), we easily deduce that the second, third and fourth terms tend
to zero. This gives (3.8). We have thus proved that Rn defined by (3.2)
converges to zero strongly in L2 ( S~ ) d .

Fourth step. - Let us now prove that the sequence rn defined by (3.1)
converges strongly to zero in 

Annales de l ’lnstitut Henri Poincaré - Analyse non linéaire
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By (3.3) we have 1 + e -03B3C0 03BB quasi everywhere on {x E SZ :
w(x) > 0~, thus log(l ~- wn z) is well defined. By Lemma 1.1 the sequence
v~ defined by

belongs to n L 00 (0.) and its gradient is given by

From it follows that rn E n As

B7rn == = Rn almost everywhere in {x E SZ : w ( x ) = 0 ~ , we
deduce that B7 rn converges strongly to zero in L2 ( ~ x w(x) = 0 ~ ) d .
On the other hand, on {x w(x) > 0~, we use rn = vn,

(3.10), (3.2), then (1.21), (3.3) and (3.6) and finally (1.13); we obtain

which completes the proof of Theorem 3. 1..

4. COMPARISON WITH THE ANALOGOUS
PROBLEM WITH OSCILLATING COEFFICIENTS

In this Section, we compare the results obtained in the above Sections
2 and 3 with the results obtained by A. Bensoussan, L. Boccardo and F.
Murat [2] for the analogous problem with varying coefficients (see also [3]).

Consider a bounded open set n c IRd and a Caratheodory function
~ : SZ x R such that for almost every x E 0. we have

where C is a positive constant; the model example is the case H(x, ~), _
~o + 

Vol. 14, nO 5-1997.



684 J. CASADO-DIAZ

We consider the problem

where A > 0 and An = An ( x) is a sequence of matrices which satisfy
aI, (An ) -1 > (a, ,~ > 0), and which H-converges to a matrix A

(see [21] ] for the definition of H-convergence). In constrast with problem
(2.1), here the domain is fixed and it is the operator -div (An~) which
varies. It has been proved in [4] that there exists a solution of (4.1 ) which is
bounded in n L°° (S~) independently of n. This solution is moreover
unique, (see [1]). Therefore, we can suppose (extracting a subsequence
if necessary) that the sequence Un converges weakly to a function U in

and weakly-* in 

Following [2] define now as the solution of the problem

It has been proved in [2] that

This means that the corrector for the linear problem (4.2) is still a corrector
for the nonlinear problem (4.1 ). The proof of (4.3) is based on the fact that
~ ~ un ~ 2 is equi-integrable because of Meyers’ regularity theorem (see [20]
or the appendix of [22]). This implies that is also equi-integrable.
As a result of this, the limit problem of (4.1) reads as

Note that in (4.4) the limit operator - div (A ~~ is the same as in the linear
case, but that the perturbation u) is no more H(x, V u) in general.

In the case of varying open sets SZn that we considered in Sections 2 and 3,
the result is different: the nonlinear perturbation H (x , V u) (which was there
~y ( ~ u ( 2 ) remains the same, but the limit operator - 0 u + (e‘~~ -1 ) ~c/ (~ye~’u )
is no more the operator which appears in the linear case (~y = 0) where it

pu. This is due to the fact that in the nonlinear case (~y 7~ 0) the
corrector result (3.2) really differs from the corrector result (1.9) or (1.20)
of the linear case. It should also be emphasized that a careful study of the
corrector result (3.2) shows that is not equi-integrable in general.
This is due to the fact that (and thus V un ~ 2 ) is not equi-integrable
in general, as it can be proved by considering special examples (see [9]).
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