@article{AIHPC_1996__13_4_445_0,
author = {Waddington, Simon},
title = {Large deviation asymptotics for {Anosov} flows},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {445--484},
year = {1996},
publisher = {Gauthier-Villars},
volume = {13},
number = {4},
mrnumber = {1404318},
zbl = {0864.58038},
language = {en},
url = {https://www.numdam.org/item/AIHPC_1996__13_4_445_0/}
}
Waddington, Simon. Large deviation asymptotics for Anosov flows. Annales de l'I.H.P. Analyse non linéaire, Tome 13 (1996) no. 4, pp. 445-484. https://www.numdam.org/item/AIHPC_1996__13_4_445_0/
[B1] , Symbolic dynamics for hyperbolic flows, Amer. J. Math., Vol. 95, 1973, pp. 429-460. | Zbl | MR
[B2] , Equilibrium states and the ergodic theory of Anosov diffeomorphisms, LNM 470, Springer Verlag, Berlin-Heidelberg-New York, 1975. | Zbl | MR
[BR] and , The ergodic theory of Axiom A flows, Invent. Math., Vol. 29, 1975, pp. 181-202. | Zbl | MR
[CP] and , Central limit asymptotics for shifts of finite type, Isr. J. Math., Vol. 69, 1990, pp. 235-249. | Zbl | MR
[D] , Large deviations and the pressure function. In: Transactions of the Eleventh Prague Conference on Information Theory, Statistical Decision Functions and Random Processes, Czech Academy of Sciences, 1992, pp. 21-33. | Zbl
[DP] and , Approximation by Browian motion for Gibbs measures and flows under a function, Ergod. Th. and Dyn. Syst., Vol. 4, 1984, pp. 541-552. | Zbl | MR
[De] , Généralisation du Théorème de Ikehara, Ann. Éc. Norm., Vol. 71, 1951, pp. 213-242. | Zbl | MR | Numdam
[E] , Large Deviations and Statistical Mechanics, Springer-Verlag, New York, Berlin, Heidelberg, 1985. | Zbl | MR
[GH] and , Théorèmes limites pour une classe de chaines de Markov et applications aux difféomorphismes d'Anosov, Ann. Inst. Henri Poincaré (Probabilitiés et Statistique), Vol. 24, 1988, pp. 73-98. | Zbl | MR | Numdam
[K] , Large deviations in dynamical systems and stochastic processes, Trans. Amer. Math. Soc., Vol. 321, 1990, pp. 505-524. | Zbl | MR
[Ka] , An Introduction to Harmonic Analysis, Wiley, New York, 1968. | Zbl | MR
[KS] and , Closed orbits in homology classes, Publ. Math. IHES, Vol. 71, 1990, pp. 5-32. | Zbl | MR | Numdam
[La1] , Ruelle's Perron-Frobenius theorem and a central limit theorem for additive functionals of one-dimensional Gibbs states, Proc. Conf. in honour of H. Robbins, 1985. | Zbl
[La2] , Distribution of periodic orbits of symbolic and Axiom A flows, Adv. Appl. Math., Vol. 8, 1987, pp. 154-193. | Zbl | MR
[Po1] , A complex Ruelle-Perron-Frobenius theorem and two counterexamples, Ergod. Th. and Dyn. Syst., Vol. 4, 1984, pp. 135-146. | Zbl | MR
[Po2] , On the rate of mixing of Axiom A flows, Invent. Math., Vol. 81, 1985, pp. 413-426. | Zbl | MR
[PP] and , Zeta functions and the periodic orbit structure of hyperbolic dynamics, Asterisque, Vol. 187-188, Math. Soc. France, 1990. | Zbl | MR | Numdam
[Ra] , The central limit theorem for geodesic flows on n-dimensional manifolds of negative curvature, Isr. J. Math., Vol. 16, 1973, pp. 181-197. | Zbl | MR
[Ru1] , Thermodynamic Formalism, Addison Wesley, New York, 1978. | MR
[Ru2] , Resonances for Axiom A flows, J. Diff. Geom., Vol. 25, 1987, pp. 99-116. | Zbl | MR
[Sc] , Asymptotic cycles, Ann. of Math., Vol. 118, 1957, pp. 270-284. | Zbl | MR
[Sh1] , Prime orbit theorems with multidimensional constraints for Axiom A flows, Monats. Math., Vol. 114, 1992, pp. 261-304. | Zbl | MR
[Sh2] , Closed orbits in homology classes for Anosov flows, Ergod. Th. Dyn. Syst., Vol. 13, 1993, pp. 387-408. | Zbl | MR
[T1] , Entropy functional (free energy) for dynamical systems and their random perturbations. In: Stochastic analysis (Katata/Kyoto 1982), pp. 437-467, North Holland Math. Library 32, North Holland, Amsterdam-New York, 1984. | Zbl | MR
[T2] , Probability theory and mathematical statistics (Kyoto 1986), pp. 482- 491, LNM 1299, Springer Verlag, Berlin-Heidelberg-New York, 1988. | Zbl
[W] , The Laplace Transform, Princeton University University Press, 1946. | Zbl | MR | JFM
[Y] , Some large deviation results for dynamical systems, Trans. Amer. Math. Soc., Vol. 318, 1990, pp. 525-543. | Zbl





