@article{AIHPC_1992__9_2_187_0,
author = {Ambrosetti, A. and Coti-Zelati, V.},
title = {Closed orbits of fixed energy for a class of {N-body} problems},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {187--200},
year = {1992},
publisher = {Gauthier-Villars},
volume = {9},
number = {2},
mrnumber = {1160848},
zbl = {0757.70007},
language = {en},
url = {https://www.numdam.org/item/AIHPC_1992__9_2_187_0/}
}
TY - JOUR AU - Ambrosetti, A. AU - Coti-Zelati, V. TI - Closed orbits of fixed energy for a class of N-body problems JO - Annales de l'I.H.P. Analyse non linéaire PY - 1992 SP - 187 EP - 200 VL - 9 IS - 2 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPC_1992__9_2_187_0/ LA - en ID - AIHPC_1992__9_2_187_0 ER -
Ambrosetti, A.; Coti-Zelati, V. Closed orbits of fixed energy for a class of N-body problems. Annales de l'I.H.P. Analyse non linéaire, Tome 9 (1992) no. 2, pp. 187-200. https://www.numdam.org/item/AIHPC_1992__9_2_187_0/
[1] and , Closed Orbits of Fixed Energy for Singular Hamiltonian Systems, Archive Rat. Mech. Analysis, Vol. 112, 1990, pp. 339-362. | Zbl | MR
[2] and , Dual Variational Methods in Critical Point Theory and Applications, J. Funct. Analysis, Vol. 14, 1973, pp. 349-381. | Zbl | MR
[3] and , Solutions of the Three-Body Problem via Critical Points at Infinity, preprint.
[4] and ZELATI, Symmetries and Non-Collision Closed Orbits for Planar N-Body Type Problems, J. Nonlin. Analysis TMA (to appear). | Zbl
[5] , Periodic Solutions for N-Body Type Problems, Ann. Inst. H. Poincaré Anal. Nonlinéaire, Vol. 7-5, 1990, pp. 477-492. | Zbl | MR | Numdam






