@article{AIHPC_1991__8_5_477_0,
author = {Felmer, P. L.},
title = {Heteroclinic orbits for spatially periodic hamiltonian systems},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {477--497},
year = {1991},
publisher = {Gauthier-Villars},
volume = {8},
number = {5},
mrnumber = {1136353},
zbl = {0749.58021},
language = {en},
url = {https://www.numdam.org/item/AIHPC_1991__8_5_477_0/}
}
TY - JOUR AU - Felmer, P. L. TI - Heteroclinic orbits for spatially periodic hamiltonian systems JO - Annales de l'I.H.P. Analyse non linéaire PY - 1991 SP - 477 EP - 497 VL - 8 IS - 5 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPC_1991__8_5_477_0/ LA - en ID - AIHPC_1991__8_5_477_0 ER -
Felmer, P. L. Heteroclinic orbits for spatially periodic hamiltonian systems. Annales de l'I.H.P. Analyse non linéaire, Tome 8 (1991) no. 5, pp. 477-497. https://www.numdam.org/item/AIHPC_1991__8_5_477_0/
[1] , and , Forced Oscillations for the Triple Pendulum, E.T.H. Zürich Report, August 1988.
[2] , Multiple Solutions for Lagrangean Systems in Tn, Nonlinear Analysis T.M.A. (to appear). | Zbl
[3] , Periodic Solutions of Spatially Periodic Hamiltonian Systems, Journal of Differential Equations (to appear). | Zbl | MR
[4] and , Multiple Solutions of the Forced Double Pendulum Equation, Preprint.
[5] and , A Variational Approach to Homoclinic Orbits in Hamiltonian Systems, Preprint, S.I.S.S.A., 1988.
[6] and , First Order Elliptic Systems and the Existence of Homoclinic Orbits in Hamiltonian System, Preprint.
[7] , "Minimax Methods in Critical Point Theory with Applications to Differential Equations", C.B.M.S. Regional Conference Series in Mathematics, 65, A.M.S., Providence, 1986. | Zbl | MR
[8] , Periodic and Heteroclinic Orbits for a Periodic Hamiltonian System, Analyse Nonlineare (to appear). | Zbl | MR | Numdam
[9] , Homoclinic Orbits for a Class of Hamiltonian Systems, Preprint. | MR
[10] , Homoclinic Orbits for a Singular Second Order Hamiltonian System, Preprint, 1989.






