@article{AIHPC_1990__7_4_269_0,
author = {Bethuel, F.},
title = {A characterization of maps in $H^1 (B^3, S^2)$ which can be approximated by smooth maps},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {269--286},
year = {1990},
publisher = {Gauthier-Villars},
volume = {7},
number = {4},
mrnumber = {1067776},
zbl = {0708.58004},
language = {en},
url = {https://www.numdam.org/item/AIHPC_1990__7_4_269_0/}
}
TY - JOUR AU - Bethuel, F. TI - A characterization of maps in $H^1 (B^3, S^2)$ which can be approximated by smooth maps JO - Annales de l'I.H.P. Analyse non linéaire PY - 1990 SP - 269 EP - 286 VL - 7 IS - 4 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPC_1990__7_4_269_0/ LA - en ID - AIHPC_1990__7_4_269_0 ER -
%0 Journal Article %A Bethuel, F. %T A characterization of maps in $H^1 (B^3, S^2)$ which can be approximated by smooth maps %J Annales de l'I.H.P. Analyse non linéaire %D 1990 %P 269-286 %V 7 %N 4 %I Gauthier-Villars %U https://www.numdam.org/item/AIHPC_1990__7_4_269_0/ %G en %F AIHPC_1990__7_4_269_0
Bethuel, F. A characterization of maps in $H^1 (B^3, S^2)$ which can be approximated by smooth maps. Annales de l'I.H.P. Analyse non linéaire, Tome 7 (1990) no. 4, pp. 269-286. https://www.numdam.org/item/AIHPC_1990__7_4_269_0/
[B] , private communication.
[BCL] , and , Harmonic maps with defects.Comm. Math. Phys., t. 107, 1986, p. 649-705. | Zbl | MR
[Bel] , The approximation problem for Sobolev maps between two manifolds, to appear. | Zbl | MR
[BZ] and , Density of smooth functions between two manifolds in Sobolev spaces. J. Func. Anal., t. 80, 1988, p. 60-75. | Zbl | MR
[CG] and , Minimizing p-harmonic maps into spheres, preprint. | MR
[H] , Approximations of Sobolev maps between an open set and an euclidean sphere, boundary data, and singularities, preprint. | MR
[SU] and , A regularity theory for harmonic maps. J. Diff. Geom., t. 17, 1982, p. 307-335. | Zbl | MR
[W] , Infima of energy functionals in homotopy classes. J. Diff. Geom, t. 23, 1986, p. 127-142. | Zbl | MR





