@article{AIHPC_1990__7_4_235_0,
author = {Barles, G.},
title = {An approach of deterministic control problems with unbounded data},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {235--258},
year = {1990},
publisher = {Gauthier-Villars},
volume = {7},
number = {4},
mrnumber = {1067774},
zbl = {0717.49021},
language = {en},
url = {https://www.numdam.org/item/AIHPC_1990__7_4_235_0/}
}
TY - JOUR AU - Barles, G. TI - An approach of deterministic control problems with unbounded data JO - Annales de l'I.H.P. Analyse non linéaire PY - 1990 SP - 235 EP - 258 VL - 7 IS - 4 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPC_1990__7_4_235_0/ LA - en ID - AIHPC_1990__7_4_235_0 ER -
Barles, G. An approach of deterministic control problems with unbounded data. Annales de l'I.H.P. Analyse non linéaire, Tome 7 (1990) no. 4, pp. 235-258. https://www.numdam.org/item/AIHPC_1990__7_4_235_0/
[1] , Quasi-variational inequalities and first-order Hamilton-Jacobi Equations. Non lin. Anal. TMA, vol. 9, n° 2, 1985.
[2] , Existence results for first-order and Hamilton-Jacobi Equations. Ann. I. H. P., Anal. non lin., vol. 1, t. 5, 1984. | Zbl | MR | Numdam
[3] , Remarks on existence results for first-order Hamilton-Jacobi Equations. Ann. I. H. P., Anal. non lin., t. 2, 1985. | Zbl | MR | Numdam
[4] and , Remarks on existence and uniqueness results for first-order Hamilton-Jacobi Equations. Proc. Coll. Franco-Esp. Pitman. | Zbl | MR
[5] and , Discontinuous solutions of deterministic optimal stopping time problems. Math. Mod. Nom. Anal., t. 21, n° 4, 1987. | Zbl | MR | Numdam
[6] and , Exit time problems in optimal control (in preparation).
[7] , Viscosity solutions for the monotone control problem. Siam J. on control and optimization. Vol. 23, n° 2, March 1985. | Zbl | MR
[8] and , Hamilton-Jacobi Equations and state constraints problems. To appear. | MR
[9] , and , Some properties of viscosity solutions of Hamilton-Jacobi Equations. Trans. AMS, t. 282, 1984. | Zbl | MR
[10] and , Viscosity solutions of Hamilton-Jacobi Equations. Trans. AMS, t. 277, 1983. | Zbl | MR
[11] , and , Uniqueness of viscosity solutions revisited.
[12] and , On existence and uniqueness of solutions of Hamilton-Jacobi Equations. Non Linear Anal. TMA. | Zbl
[13] , Thèse. Université Paris IX-Dauphine.
[14] and , Deterministic and Stochastic optimal control. Springer, Berlin, 1975, | Zbl | MR
[15] , A simple direct proof of uniqueness for solutions of the Hamilton-Jacobi Equations of Eikonal type. | Zbl
[16] , A boundary value problem of the Dirichlet type for Hamilton-Jacobi Equation. | Zbl | MR | Numdam
[17] , Perron's method for Hamilton-Jacobi Equations. | Zbl
[18] , Remarks on the existence of viscosity solutions of Hamilton-Jacobi Equations. Bull. Facul. Sci. Eng., Chuo University, t. 26, 1983, p. 5-24. | Zbl | MR
[19] , Existence and Uniqueness of solutions of Hamilton-Jacobi Equations, preprint. | MR
[20] , Generalized solutions of Hamilton-Jacobi Equations of Eikonal type. USSR Sbornik, t. 27, 1975, p. 406-446. | Zbl
[21] and , A remark on regularisation on Hilbert spaces. J. Isr. Math. Vol. 7, n° 4-1990.
[22] , Generalized Solutions of Hamilton-Jacobi Equations. Pitman, London, 1982. | Zbl | MR
[23] , Existence results for first-order Hamilton-Jacobi Equations. Rich. Mat. Napoli, t. 32, 1983, p. 1-23. | Zbl | MR
[24] , A uniqueness result in the calculus of variations. Publi. of Universita degli studi di Salerno.
[25] , Some remarks on nonconvex problems. Proc. Symposium Year on material instability in continuum mechanics, July 1986, Heriot-Watt University, Scotland. | Zbl | MR
[26] , Existence results for nonconvex problems of the calculus of variations. Proc. Meet. in Calculus of Variations and P. D. E., Trento, June 1986; Springer, Lectures notes in Math. | Zbl | MR
[27] and , Nonconvex problems in the calculus of variations. Non Lin. Anal. TMA., vol. 9, n° 4, 1985. | MR
[28] and , Existence theorems for nonconvex problems. J. Math. Pure Appl., t. 62, 1983. | Zbl | MR
[29] and , Un théorème d'existence pour des problèmes du calcul des variations non convexes. C. R. Acad. Sci. Paris, t. 297, série I, p. 615-617. | Zbl | MR
[30] , Optimal control problems with stale space constraints. Siam J. Control Opt., May-Sept. 1986. | Zbl
[31] , Existence of viscosity solutions of Hamilton-Jacobi Equations. J. Diff. Eq.





