@article{AIHPC_1989__S6__49_0,
author = {Artstein, S.},
title = {A variational convergence that yields chattering systems},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {49--71},
year = {1989},
publisher = {Gauthier-Villars},
volume = {S6},
mrnumber = {1204009},
zbl = {0674.49026},
language = {en},
url = {https://www.numdam.org/item/AIHPC_1989__S6__49_0/}
}
Artstein, S. A variational convergence that yields chattering systems. Annales de l'I.H.P. Analyse non linéaire, Tome S6 (1989), pp. 49-71. https://www.numdam.org/item/AIHPC_1989__S6__49_0/
[1] , Topological dynamics of an ordinary differential equation. J. Differential Equations 23, 1977, 216-223. | Zbl | MR
[2] , Distributions of random sets and random selections. Israel J. Math. 46, 1983, 313-324. | Zbl | MR
[3] and , Optimal Control. McGraw Hill, New York, 1966. | Zbl | MR
[4] , Variational Convergence for Functions and Operators. Pitman, Applicable Mathematics Series, Boston, 1984. | Zbl | MR
[5] , Convergence of Probability Measures. John Wiley, New York, 1968. | Zbl | MR
[6] , Some relaxation problems in optimal control theory. J. Math. Anal. Appl. 125, 1987, 272-287. | Zbl | MR
[7] , Relaxation and Γ-limits in optimal control theory. Lecture in the Congrés Franco-Quebecois D'Analyse Non Linéaire Appliquée, Perpignan, Juin 1987.
[8] and , r-convergence and optimal control problems. J. Optimiz. Theory Appl. 38, 1982, 385-407. | Zbl | MR
[9] , On a theorem of N.N. Bogolyubov. Ukranain Math. J. 4 (2), 1952, 215-218.
[10] , Generalized ordinary differential equations. Czech. Math. J. 8, 1958, 360-388. | Zbl | MR
[11] , Una theorema sulla funzioni continue rispetto ad una i misurable rispetto at ultra variable. Rend. Sem. Mat. Univ. Padova 17, 1948, 102-106. | Zbl | MR | Numdam
[12] , Optimal Control of Differential and Functional Equations. Academic Press, New York 1972. | Zbl
[13] , Calculus of Variations and Optimal Control Theory. W.B. Saunders, Philadelphia 1969. | Zbl





