@article{AIHPC_1989__6_6_481_0,
author = {Roub{\'\i}\v{c}ek, Tom\'a\v{s}},
title = {The {Stefan} problem in heterogeneous media},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {481--501},
year = {1989},
publisher = {Gauthier-Villars},
volume = {6},
number = {6},
mrnumber = {1035339},
zbl = {0706.35139},
language = {en},
url = {https://www.numdam.org/item/AIHPC_1989__6_6_481_0/}
}
Roubíček, Tomáš. The Stefan problem in heterogeneous media. Annales de l'I.H.P. Analyse non linéaire, Tome 6 (1989) no. 6, pp. 481-501. https://www.numdam.org/item/AIHPC_1989__6_6_481_0/
[1] and , On tne Existence of Weak Solutions to an n-Dimensional Stefan Problem with Nonlinear Boundary Conditions, S.I.A.M. J. Math. Anal., Vol. 11, 1980, pp. 632-645. | Zbl | MR
2] , The Stefan Problem in Several Space Variables, Trans. Amer. Math. Soc., Vol. 133, 1968, pp. 51-87. | Zbl | MR
3] , On the Stefan Problem (in Russian), Mat. Sb., Vol. 53, 1961, pp. 488-514. | Zbl
4] , Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod et Gauthier-Villars, Paris, 1969. | Zbl | MR
5] , and , Semigroup Approach to the Stefan Problem with Nonlinear Flux, Atti Acc. Lincei Rend. fis., S. VIII, Vol. 75, 1983, pp. 24-33. | Zbl | MR
[6] and , A Generalized Stefan Problem in Several Space Variables, Appl. Math. Optim., Vol. 9, 1983, pp. 193-224. | Zbl | MR
[7] , A Variational Inequality Approach to Generalized Two-Phase Stefan Problem in Several Space Variables, Ann. Matem. Pura et Applicata, Vol. 131, 1982, pp. 333-373. | Zbl | MR
[8] , Optimal Control of a Stefan Problem with State-Space Constraints, Numer. Math., Vol. 50, 1987, pp. 723-744. | Zbl | MR
[9] , Sur le problème de Stefan avec flux non linéaire, Boll. U.M.I.,C-18,1981, pp. 63-86. | Zbl | MR






