@article{AIHPC_1987__4_3_275_0,
author = {Ambrosetti, Antonio and Coti Zelati, Vittorio},
title = {Solutions with minimal period for hamiltonian systems in a potential well},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {275--296},
year = {1987},
publisher = {Gauthier-Villars},
volume = {4},
number = {3},
mrnumber = {898050},
zbl = {0623.58013},
language = {en},
url = {https://www.numdam.org/item/AIHPC_1987__4_3_275_0/}
}
TY - JOUR AU - Ambrosetti, Antonio AU - Coti Zelati, Vittorio TI - Solutions with minimal period for hamiltonian systems in a potential well JO - Annales de l'I.H.P. Analyse non linéaire PY - 1987 SP - 275 EP - 296 VL - 4 IS - 3 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPC_1987__4_3_275_0/ LA - en ID - AIHPC_1987__4_3_275_0 ER -
%0 Journal Article %A Ambrosetti, Antonio %A Coti Zelati, Vittorio %T Solutions with minimal period for hamiltonian systems in a potential well %J Annales de l'I.H.P. Analyse non linéaire %D 1987 %P 275-296 %V 4 %N 3 %I Gauthier-Villars %U https://www.numdam.org/item/AIHPC_1987__4_3_275_0/ %G en %F AIHPC_1987__4_3_275_0
Ambrosetti, Antonio; Coti Zelati, Vittorio. Solutions with minimal period for hamiltonian systems in a potential well. Annales de l'I.H.P. Analyse non linéaire, Tome 4 (1987) no. 3, pp. 275-296. https://www.numdam.org/item/AIHPC_1987__4_3_275_0/
[1] , Nonlinear Oscillatiations with Minimal Period, Proceed. Symp. Pure Math., Vol. 44, 1985 pp. 29-35. | Zbl | MR
[2] and , Solutions of Minimal Period for a Class of Convex Hamiltonian Systems, Math. Ann., Vol. 255, 1981, pp. 405-421. | Zbl | MR
[3] and , Dual Variational Methods in Critical Point Theory and Applications, J. Funct. Anal., Vol. 14, 1973, pp. 349-381. | Zbl | MR
[4] and , Applied Nonlinear Analysis, Wiley, New York, 1984. | Zbl | MR
[5] , Normal Modes of a Lagrangian System Constrained in a Potential Well, Ann. LH.P. "Analyse non lineare", Vol. 1, 1984, pp. 379-400. | Zbl | MR | Numdam
[6] , Periodic Solutions of Hamiltonian Inclusions, J. Diff. Eq., Vol. 40, 1981, pp. 1-6. | Zbl | MR
[7] , Optimization and Nonsmooth Analysis, Wiley, New York, 1983. | Zbl | MR
[8] and , Hamiltonian Trajectories having Prescribed Minimal Period, Comm. Pure and Appl. Math., Vol. 33, 1980, pp. 103-116. | Zbl | MR
[9] , Periodic Solutions to Hamiltonian Equations and a Theorem od P. Rabinowitz, J. Diff. Eq., Vol. 34, 1979, pp. 523-534. | Zbl | MR
[10] , Une théorie de Morse pour les systèmes hamiltoniens convexes, Ann. I.H.P. "Analyse non lineare", Vol. 1, 1984, pp. 19-78. | Zbl | MR | Numdam
[11] and , Periodic Solutions with Prescribed Period for Convex Autonomous Hamiltonian Systems, Inv. Math. 81 (1985), pp. 155-188). | Zbl | MR
[12] and , Periodic Solutions of Convex Hamiltonian Systems with a Quadratic Growth at the Origin and Superquadratic at Infinity, preprint, Univ. degli Studi di Roma, Roma, 1985. | MR
[13] and , Some Results on Solutions of Minimal Period to Hamiltonian Systems, in Nonlinear Oscillations for Conservative Systems, A. AMBROSETTI Ed., Pitagora, Bologna, 1985, pp. 27-35.
[14] , and , Function Spaces, Academia, Prague, 1977. | Zbl | MR
[15] , Periodic Solutions of Hamiltonian Systems, Comm. Pure and Appl. Math., Vol. 31, 1978, pp. 157-184. | Zbl | MR
[16] , Periodic Solutions of Hamiltonian Systems: a Survey, S.I.A.M. J. Math. Anal., Vol. 13, 1982, pp. 343-352. | Zbl | MR
[17] , Real Variable and Integration, B. G. Teubner, Stuttgart, 1976. | Zbl | MR






