@article{AIHPC_1984__1_4_285_0,
author = {Girardi, Mario},
title = {Multiple orbits for hamiltonian systems on starshaped surfaces with symmetries},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {285--294},
year = {1984},
publisher = {Gauthier-Villars},
volume = {1},
number = {4},
mrnumber = {778975},
zbl = {0582.70019},
language = {en},
url = {https://www.numdam.org/item/AIHPC_1984__1_4_285_0/}
}
TY - JOUR AU - Girardi, Mario TI - Multiple orbits for hamiltonian systems on starshaped surfaces with symmetries JO - Annales de l'I.H.P. Analyse non linéaire PY - 1984 SP - 285 EP - 294 VL - 1 IS - 4 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPC_1984__1_4_285_0/ LA - en ID - AIHPC_1984__1_4_285_0 ER -
Girardi, Mario. Multiple orbits for hamiltonian systems on starshaped surfaces with symmetries. Annales de l'I.H.P. Analyse non linéaire, Tome 1 (1984) no. 4, pp. 285-294. https://www.numdam.org/item/AIHPC_1984__1_4_285_0/
[1] , , On a theorem by Ekeland and Lasry concerning the number of periodic Hamiltonian trajectories, J. Diff. Eq., t. 43, 1981, p. 1-6. | Zbl
[2] , , Solutions of Minimal Period for a Class of Convex Hamiltonian systems, Math. Annalen, t. 255, 1981, p. 405-421. | Zbl | MR
[3] , , Dual variational method in critical point theory and applications, J. Functional Analysis, t. 14, 1973, p. 349-381. | Zbl | MR
[4] , A geometrical index for the group S1 and some applications to the study of periodic solutions of O. D. E. Comm. Pure Appl. Math., t. 34, 1981, p. 393-432. | Zbl | MR
[5] , On the critical point theory for indefinite functional in the presence of symmetries to appear in Trans. A. M. S. | Zbl | MR
[6] , , , , Sur le nombre des orbites périodique des équations de Hamilton sur une surface étoilée, note aux C. R. A. S., t. A, Paris, to appear. | Zbl
[7] , , , , Existence of Multiple Periodic Orbits on Star-shaped Hamilton surfaces, preprint. | MR
[8] , , On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface, Ann. Math., t. 112, 1980, p. 283-319. | Zbl | MR
[9] , A simple proof for a result of I. Ekeland and J. M. Lasry concerning the number of periodic Hamiltonian trajectories on a prescribed energy surface, to appear on B. U. M. I.
[10] , Periodic orbits near an equilibrium and a theorem by A. Weinstein, Comm. Pure Appl. Math., t. 29, 1976, p. 724-747. | Zbl | MR
[11] , Periodic Solutions of Hamiltonian systems, Comm. Pure Appl. Math., t. 31, 1978, p. 157-184. | Zbl | MR
[12] , On subharmonic solutions of Hamiltonian systems, Comm. Pure Appl. Math., t. 33, 1980, p. 603-633. | Zbl | MR
[13] , Existence of multiple normal mode trajectories on convex energy surfaces of even, classical Hamiltonian system. Preprint.
[14] , Normal mode for nonlinear Hamiltonian systems, Inv. Math., t. 20, 1973, p. 47-57. | Zbl





