@article{AIHPC_1984__1_4_205_0,
author = {Devys, Christophe and Morel, Jean-Michel and Witomski, P.},
title = {A homotopy method for solving an equation of the type $- \Delta u = F(u)$},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {205--222},
year = {1984},
publisher = {Gauthier-Villars},
volume = {1},
number = {4},
zbl = {0569.65087},
language = {en},
url = {https://www.numdam.org/item/AIHPC_1984__1_4_205_0/}
}
TY - JOUR AU - Devys, Christophe AU - Morel, Jean-Michel AU - Witomski, P. TI - A homotopy method for solving an equation of the type $- \Delta u = F(u)$ JO - Annales de l'I.H.P. Analyse non linéaire PY - 1984 SP - 205 EP - 222 VL - 1 IS - 4 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPC_1984__1_4_205_0/ LA - en ID - AIHPC_1984__1_4_205_0 ER -
%0 Journal Article %A Devys, Christophe %A Morel, Jean-Michel %A Witomski, P. %T A homotopy method for solving an equation of the type $- \Delta u = F(u)$ %J Annales de l'I.H.P. Analyse non linéaire %D 1984 %P 205-222 %V 1 %N 4 %I Gauthier-Villars %U https://www.numdam.org/item/AIHPC_1984__1_4_205_0/ %G en %F AIHPC_1984__1_4_205_0
Devys, Christophe; Morel, Jean-Michel; Witomski, P. A homotopy method for solving an equation of the type $- \Delta u = F(u)$. Annales de l'I.H.P. Analyse non linéaire, Tome 1 (1984) no. 4, pp. 205-222. https://www.numdam.org/item/AIHPC_1984__1_4_205_0/
[1] , Transversal Mappings and Flows. W. A. Benjamin, Inc., 1967. | Zbl | MR
[2] , Sobolev Spaces. Academic Press, New York, 1975. | Zbl | MR
[3] and , A numerical continuation method that works generically. University of Maryland, Dept. of Math., MD 77-9, JA, TR 77-9, 1977.
[4] , and , Finding zeros of maps: Homotopy methods that are constructive with probability one. Math. Comp., t. 32, 1978, p. 887-899. | Zbl | MR
[5] and , Homotopies for computation of fixed points on unbounded regions, Mathematical Programming, t. 3, n° 2, 1972, p. 225-237. | Zbl | MR
[6] , Perturbation theory for nonlinear operators. Springer Verlag, 1966. | Zbl | MR
[7] , and , A Method of Continuation for Calculating a Brouwer Fixed Point, in: Computing Fixed Points with Applications, S. Karamardian, ed., Academic Press, New York, 1977. | Zbl | MR
[8] , Analysis, Madison-Wesley Publishing Company, 1968. | Zbl
[9] , An infinite dimensional version of Sard's theorem. American Journal of Math., t. 87, 1965, p. 861-866. | Zbl | MR
[10] , A convergent process of price adjustment and global Newton methods, J. Math. Econ., t. 3, p. 1-14. | Zbl | MR





