Let K be a compact, non-polar set in ℝm, m≥3 and let SKi(t)={Bi(s)+y: 0≤s≤t, y∈K} be Wiener sausages associated to independent brownian motions Bi, i=1, 2, 3 starting at 0. The expectation of volume of ⋂i=13SKi(t) with respect to product measure is obtained in terms of the equilibrium measure of K in the limit of large t.
Soit K un ensemble compact, non-polaire dans ℝm (m≥3) et soit SKi(t)={Bi(s)+y: 0≤s≤t, y∈K} des saucisses de Wiener associées à des processus Browniens indépendants Bi, i=1, 2, 3 initialisés à 0. L'espérance des volumes de ⋂i=13SKi(t) par rapport à la mesure produit est obtenue en termes de la mesure d'équilibre de K lorsque t tend vers l'infini.
Keywords: Wiener sausage, equilibrium measure
@article{AIHPB_2010__46_2_313_0,
author = {van den Berg, M.},
title = {On the volume of intersection of three independent {Wiener} sausages},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {313--337},
year = {2010},
publisher = {Gauthier-Villars},
volume = {46},
number = {2},
doi = {10.1214/09-AIHP316},
mrnumber = {2667701},
zbl = {1201.35108},
language = {en},
url = {https://www.numdam.org/articles/10.1214/09-AIHP316/}
}
TY - JOUR AU - van den Berg, M. TI - On the volume of intersection of three independent Wiener sausages JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2010 SP - 313 EP - 337 VL - 46 IS - 2 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/09-AIHP316/ DO - 10.1214/09-AIHP316 LA - en ID - AIHPB_2010__46_2_313_0 ER -
%0 Journal Article %A van den Berg, M. %T On the volume of intersection of three independent Wiener sausages %J Annales de l'I.H.P. Probabilités et statistiques %D 2010 %P 313-337 %V 46 %N 2 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/09-AIHP316/ %R 10.1214/09-AIHP316 %G en %F AIHPB_2010__46_2_313_0
van den Berg, M. On the volume of intersection of three independent Wiener sausages. Annales de l'I.H.P. Probabilités et statistiques, Tome 46 (2010) no. 2, pp. 313-337. doi: 10.1214/09-AIHP316
[1] and . Intersections of random walks and Wiener sausages in four dimensions. Acta Appl. Math. 45 (1996) 195-237. | Zbl | MR
[2] , and . Random Walks, Critical Phenomena and Triviality in Quantum Field Theory. Texts and Monographs in Physics. Springer, New York, 1992. | Zbl | MR
[3] . Asymptotic Formulae in Spectral Geometry. Studies in Advanced Mathematics. Chapman & Hall, Boca Raton, 2004. | Zbl | MR
[4] and . Table of Integrals, Series and Products. Academic Press, San Diego, 1994. | Zbl | MR
[5] , and . Inequalities. Cambridge Univ. Press, London, 1952. | Zbl | MR
[6] , , and . Loop condensation effects in the behaviour of random walks. In The Dynkin Festschrift, Markov Processes and Their Applications 167-184. M. Freidlin (ed.). Progr. Probab. 34. Birkhäuser, Boston, 1994. | Zbl | MR
[7] . Intersections of Random Walks. Probability and Its Applications. Birkhäuser, Boston, 1991. | Zbl | MR
[8] . Sur une conjecture de M. Kac. Probab. Theory Related Fields 78 (1988) 389-402. | Zbl | MR
[9] . Wiener sausage and self-intersection local times. J. Funct. Anal. 88 (1990) 299-341. | Zbl | MR
[10] . Some properties of planar Brownian motion. In École d'Été de Probabilités de Saint-Flour XX, 1990 111-235. Lecture Notes in Mathematics 1527. Springer, Berlin, 1992. | Zbl | MR
[11] and . The Self-Avoiding Walk. Birkhäuser, Boston, 1993. | Zbl | MR
[12] . Asymptotic expansions for the expected volume of a stable sausage. Ann. Probab. 18 (1990) 492-523. | Zbl | MR
[13] and . Brownian Motion and Classical Potential Theory. Academic Press, New York, 1978. | Zbl | MR
[14] . Electrostatic capacity and Brownian motion. Z. Wahrsch. Verw. Gebiete 3 (1964) 110-121. | Zbl | MR
[15] . Brownian Motion, Obstacles and Random Media. Springer Monographs in Mathematics. Springer, Berlin, 1998. | Zbl | MR
[16] . On the expected volume of intersection of independent Wiener sausages and the asymptotic behaviour of some related integrals. J. Funct. Anal. 222 (2005) 114-128. | Zbl | MR
[17] and . Mean curvature and the heat equation. Math. Z. 215 (1994) 437-464. | Zbl | MR
[18] , and . On the volume of intersection of two Wiener sausages. Ann. Math. 159 (2004) 741-782. | Zbl | MR
Cité par Sources :





