We consider a model of the shape of a growing polymer introduced by Durrett and Rogers (Probab. Theory Related Fields 92 (1992) 337-349). We prove their conjecture about the asymptotic behavior of the underlying continuous process (corresponding to the location of the end of the polymer at time ) for a particular type of repelling interaction function without compact support.
Nous considérons un modèle de formation de polymères introduit par Durrett et Rogers (Probab. Theory Related Fields 92 (1992) 337-349). Nous prouvons leur conjecture sur le comportement asymptotique du processus continu associé (correspondant à l’emplacement de l’extrémité du polymère au temps ) pour un type particulier de fonction d’interaction répulsive à support non compact.
Keywords: self-interacting diffusions, repulsive interaction, superdiffusive process, almost sure law of large numbers
@article{AIHPB_2008__44_1_29_0,
author = {Mountford, Thomas and Tarr\`es, Pierre},
title = {An asymptotic result for brownian polymers},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {29--46},
year = {2008},
publisher = {Gauthier-Villars},
volume = {44},
number = {1},
doi = {10.1214/07-AIHP113},
mrnumber = {2451570},
zbl = {1175.60084},
language = {en},
url = {https://www.numdam.org/articles/10.1214/07-AIHP113/}
}
TY - JOUR AU - Mountford, Thomas AU - Tarrès, Pierre TI - An asymptotic result for brownian polymers JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2008 SP - 29 EP - 46 VL - 44 IS - 1 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/07-AIHP113/ DO - 10.1214/07-AIHP113 LA - en ID - AIHPB_2008__44_1_29_0 ER -
%0 Journal Article %A Mountford, Thomas %A Tarrès, Pierre %T An asymptotic result for brownian polymers %J Annales de l'I.H.P. Probabilités et statistiques %D 2008 %P 29-46 %V 44 %N 1 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/07-AIHP113/ %R 10.1214/07-AIHP113 %G en %F AIHPB_2008__44_1_29_0
Mountford, Thomas; Tarrès, Pierre. An asymptotic result for brownian polymers. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) no. 1, pp. 29-46. doi: 10.1214/07-AIHP113
. Vertex-reinforced random walks and a conjecture of Pemantle. Ann. Probab. 25 (1997) 361-392. | Zbl | MR
, and . Self-interacting diffusions. Probab. Theory Related Fields 122 (2002) 1-41. | Zbl | MR
and . Self-interacting diffusions II: convergence in law. Ann. Inst. H. Poincaré Probab. Statist. 39 (2003) 1043-1055. | Zbl | MR | Numdam
and . Self-interacting diffusions III: symmetric interactions. Ann. Probab. 33 (2005) 1716-1759. | Zbl | MR
. Limit theorems for Diaconis walk on certain trees. Probab. Theory Related Fields 136 (2006) 81-101. | Zbl | MR
. On the transience of processes defined on Galton-Watson trees. Ann. Probab. 34 (2006) 870-878. | Zbl | MR
and . Random walks with reinforcement. Unpublished manuscript, 1986.
and . Self-attracting diffusions: two case studies. Math. Ann. 303 (1995) 87-93. | Zbl | MR
and . The strong law of large numbers for a Brownian polymer. Ann. Probab. 2 (1996) 1300-1323. | Zbl | MR
. Reinforced random walk. Probab. Theory Related Fields 84 (1990) 203-229. | Zbl | MR
. Brownian motion and random walk perturbed at extrema. Probab. Theory Related Fields 113 (1999) 501-518. | Zbl | MR
. Reinforced and perturbed random walks. Random Walks (Budapest, 1998) János Bolyai Math. Soc., Budapest 9 (1999) 113-126. | Zbl | MR
and . On convergence of chains with occupational self-interactions. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460 (2004) 325-346. | Zbl | MR
and . Self-interacting Markov chains. Stoch. Anal. Appl. 24 (2006) 615-660. | Zbl | MR
. Recent progress on de Finetti's notions of exchangeability. Bayesian Statistics, 3 (Valencia, 1987) 111-125. Oxford Sci. Publ., Oxford University Press, New York, 1988. | Zbl | MR
and . Bayesian analysis for reversible Markov chains. Ann. Statist. 34 (2006) 1270-1292. | Zbl | MR
, and . Once edge-reinforced random walk on a tree. Probab. Theory Related Fields 122 (2002) 567-592. | Zbl | MR
and . Asymptotic behavior of Brownian polymers. Probab. Theory Related Fields 92 (1992) 337-349. | Zbl | MR
and . Theory of Stochastic Processes, volume 3. Springer, 1979. | Zbl
and . Boundedness and convergence of some self-attracting diffusions. Math. Ann. 325 (2003) 81-96. | Zbl | MR
and . Stochastic Differential Equations and Diffusion Processes. North-Holland, Amsterdam, 1981. | Zbl | MR
and . Brownian Motion and Stochastic Calculus. Springer, New York, 1988. | Zbl | MR
and . Edge-reinforced random walk on finite graphs. Infinite Dimensional Stochastic Analysis (Amsterdam, 1999), R. Neth. Acad. Arts. Sci. 217-234, 2000. | Zbl | MR
and . Tubular recurrence. Acta Math. Hungar. 97 (2002) 207-221. | Zbl | MR
. Attracting edge property for a class of reinforced random walks. Ann. Probab. 31 (2003) 1615-1654. | Zbl | MR
and . Attracting edge and strongly edge reinforced walks. Ann. Probab. 35 (2007) 1783-1806. | Zbl | MR
and . Edge-reinforced random walk on a ladder. Ann. Probab. 33 (2005) 2051-2093. | Zbl | MR
and . Edge-reinforced random walk on one-dimensional periodic graphs. Preprint, 2006. | MR
and . Linearly edge-reinforced random walks. In Dynamics and Stochastics: Festschrift in the Honor of Michael Keane 66-77, Inst. Math. Statist., Beachvood, OH, 2006. | Zbl | MR
and . Asymptotic behavior of edge-reinforced random walks. Ann. Probab. 35 (2007) 115-140. | MR
and . Recurrence of edge-reinforced random walk on a two-dimensional graph. Preprint, 2007.
, and . Self-avoiding walk: a Brownian motion model with local time drift. Probab. Theory Related Fields 74 (1987) 271-287. | Zbl | MR
and . Aggregation, blowup, and collapse: the ABC's of taxis in reinforced random walks. SIAM J. Appl. Math. 57 (1997) 1044-1081. | Zbl | MR
. Phase transition in reinforced random walk and RWRE on trees. Ann. Probab. 16 (1988) 1229-1241. | Zbl | MR
. Random processes with reinforcement. Massachussets Institute of Technology doctoral dissertation, 1988.
. Vertex-reinforced random walk. Probab. Theory Related Fields 92 (1992) 117-136. | Zbl | MR
. A survey of random processes with reinforcement. Probab. Surv. 4 (2007) 1-79. | MR
. Self-attracting diffusions: case of the constant interaction. Probab. Theory Related Fields 107 (1997) 177-196. | Zbl | MR
and . Continuous Martingales and Brownian Motion, 2nd edition. Springer, New York, 1991. | Zbl | MR
and . Diffusions, Markov Processes, and Martingales, volume 2. Wiley, New York, 1987. | Zbl | MR
. How edge-reinforced random walk arises naturally. Probab. Theory Related Fields 126 (2003) 243-260. | Zbl | MR
. On the recurrence of edge-reinforced random walk on ℤ×G. Probab. Theory Related Fields 135 (2006) 216-264. | MR
. Recurrence of reinforced random walk on a ladder. Electron. J. Probab. 11 (2006) 301-310. | Zbl | MR
. Reinforced random walks on the d-dimensional integer lattice. Technical Report 94-26, Purdue University, 1994. | Zbl
. Behavior of 1-dimensional reinforced random walk. Osaka J. Math. 37 (2000) 355-372. | Zbl | MR
. Vertex-reinforced random walk on ℤ eventually gets stuck on five points. Ann. Probab. 32 (2004) 2650-2701. | Zbl | MR
. The ‘true' self-avoiding walk with bond repulsion on ℤ: limit theorems. Ann. Probab. 23 (1995) 1523-1556. | Zbl | MR
. Self-interacting random motions - a survey. Random Walks (Budapest, 1999), Bolyai Society Mathematical Studies 9 (1999) 349-384. | Zbl | MR
and . The true self-repelling motion. Probab. Theory Related Fields 111 (1998) 375-452. | Zbl | MR
. Games, walks and grammars: Problems I've worked on. PhD thesis, Universiteit van Amsterdam, 2000.
. Vertex-reinforced random walk on arbitrary graphs. Ann. Probab. 29 (2001) 66-91. | Zbl | MR
. Phase transition in vertex-reinforced random walks on ℤ with non-linear reinforcement. J. Theoret. Probab. 19 (2006) 691-700. | Zbl | MR
Cité par Sources :






