Hall, Peter 1 ; Park, Byeong U.  ; Turlach, Berwin A. 
@article{AIHPB_2002__38_6_959_0,
author = {Hall, Peter and Park, Byeong U. and Turlach, Berwin A.},
title = {Rolling-ball method for estimating the boundary of the support of a point-process intensity},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {959--971},
year = {2002},
publisher = {Elsevier},
volume = {38},
number = {6},
mrnumber = {1955346},
zbl = {1011.62035},
language = {en},
url = {https://www.numdam.org/item/AIHPB_2002__38_6_959_0/}
}
TY - JOUR AU - Hall, Peter AU - Park, Byeong U. AU - Turlach, Berwin A. TI - Rolling-ball method for estimating the boundary of the support of a point-process intensity JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2002 SP - 959 EP - 971 VL - 38 IS - 6 PB - Elsevier UR - https://www.numdam.org/item/AIHPB_2002__38_6_959_0/ LA - en ID - AIHPB_2002__38_6_959_0 ER -
%0 Journal Article %A Hall, Peter %A Park, Byeong U. %A Turlach, Berwin A. %T Rolling-ball method for estimating the boundary of the support of a point-process intensity %J Annales de l'I.H.P. Probabilités et statistiques %D 2002 %P 959-971 %V 38 %N 6 %I Elsevier %U https://www.numdam.org/item/AIHPB_2002__38_6_959_0/ %G en %F AIHPB_2002__38_6_959_0
Hall, Peter; Park, Byeong U.; Turlach, Berwin A. Rolling-ball method for estimating the boundary of the support of a point-process intensity. Annales de l'I.H.P. Probabilités et statistiques, Tome 38 (2002) no. 6, pp. 959-971. https://www.numdam.org/item/AIHPB_2002__38_6_959_0/
[1] , , Limit theorems for functionals of convex hulls, Probab. Theory Related Fields 100 (1994) 31-55. | Zbl | MR
[2] , , , , Data Envelope Analysis: Theory, Methodology and Applications, Kluwer, Boston, 1995. | Zbl
[3] , , Economics of scale in US electric power generation, J. Polit. Economy 84 (1976) 653-667.
[4] , The convex hull of a random set of points, Biometrika 52 (1965) 331-343. | Zbl | MR
[5] , , , , On estimation of monotone and concave frontier functions, J. Amer. Statist. Assoc. 94 (1999) 220-228. | Zbl | MR
[6] , Limit theorems for convex hulls, Probab. Theory Related Fields 79 (1988) 327-368. | Zbl | MR
[7] , Statistical inference and nonparametric efficiency: a selective survey, J. Productivity Anal. 7 (1996) 161-176.
[8] , , , On polynomial estimators of frontiers and boundaries, J. Multivariate Anal. 66 (1998) 71-98. | Zbl | MR
[9] , , , Estimation of non-sharp support boundaries, J. Multivariate Anal. 55 (1995) 205-218. | Zbl | MR
[10] , , , A note on the convergence of nonparametric DEA estimators for production efficiency scores, Econometric Theory 14 (1998) 783-793. | MR
[11] , , Minimax Theory of Image Reconstruction, Lecture Notes in Statistics, 82, Springer-Verlag, Berlin, 1993. | Zbl | MR
[12] , , , Efficient estimation of monotone boundaries, Ann. Statist. 23 (1995) 476-489. | Zbl | MR
[13] , , , On estimation of monotone and convex boundaries, Pub. Inst. Statist. Univ. Paris 49 (1995) 3-18. | Zbl | MR
[14] , , Asymptotical minimax recovery of sets with smooth boundaries, Ann. Statist. 23 (1995) 502-524. | Zbl | MR
[15] , Two dimensional interpolation from random data, Comput. J. 19 (1976) 178-181. | Zbl | MR
[16] , Lectures on Random Voronoi Tessellations, Lecture Notes in Statistics, 87, Springer-Verlag, New York, 1994. | Zbl | MR
[17] , Some properties of convex hulls generated by homogeneous Poisson point processes in an unbounded convex domain, Ann. Inst. Statist. Math. 47 (1995) 21-29. | Zbl | MR
[18] , Spatial Statistics, Wiley, New York, 1981. | Zbl | MR
[19] , Computational Geometry in C, Cambridge University Press, Cambridge, 1994. | Zbl
[20] , , On the convex hull of n randomly chosen points, Z. Wahrscheinlichkeitstheorie Verw. Geb. 2 (1963) 75-84. | Zbl
[21] , , On the convex hull of n randomly chosen points II, Z. Wahrscheinlichkeitstheorie Verw. Geb. 3 (1964) 138-147. | Zbl | MR
[22] , Data envelopment analysis: the evolution of the state-of-the-art, 1978-1995, J. Productivity Anal. 7 (1996) 99-137.
[23] R. Turner, D. Macqueen, S function Deldir to compute the Dirichlet (Voronoi) tesselation and Delaunay triangulation of a planar set of data points, Available from Statlib, 1996.





