@article{AIHPB_2002__38_6_825_0,
author = {Bickel, Peter J. and Ritov, Ya'acov and Ryd\'en, Tobias},
title = {Hidden {Markov} model likelihoods and their derivatives behave like i.i.d. ones},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {825--846},
year = {2002},
publisher = {Elsevier},
volume = {38},
number = {6},
mrnumber = {1955339},
zbl = {1011.62087},
language = {en},
url = {https://www.numdam.org/item/AIHPB_2002__38_6_825_0/}
}
TY - JOUR AU - Bickel, Peter J. AU - Ritov, Ya'acov AU - Rydén, Tobias TI - Hidden Markov model likelihoods and their derivatives behave like i.i.d. ones JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2002 SP - 825 EP - 846 VL - 38 IS - 6 PB - Elsevier UR - https://www.numdam.org/item/AIHPB_2002__38_6_825_0/ LA - en ID - AIHPB_2002__38_6_825_0 ER -
%0 Journal Article %A Bickel, Peter J. %A Ritov, Ya'acov %A Rydén, Tobias %T Hidden Markov model likelihoods and their derivatives behave like i.i.d. ones %J Annales de l'I.H.P. Probabilités et statistiques %D 2002 %P 825-846 %V 38 %N 6 %I Elsevier %U https://www.numdam.org/item/AIHPB_2002__38_6_825_0/ %G en %F AIHPB_2002__38_6_825_0
Bickel, Peter J.; Ritov, Ya'acov; Rydén, Tobias. Hidden Markov model likelihoods and their derivatives behave like i.i.d. ones. Annales de l'I.H.P. Probabilités et statistiques, Tome 38 (2002) no. 6, pp. 825-846. https://www.numdam.org/item/AIHPB_2002__38_6_825_0/
[1] , , Asymptotic Techniques for Use in Statistics, Chapman and Hall, London, 1989. | Zbl | MR
[2] , , Statistical inference for probabilistic functions of finite state Markov chains, Ann. Math. Statist. 37 (1966) 1554-1563. | Zbl | MR
[3] , , , A simple analysis of third-order efficiency of estimates, in: Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, Vol. II, Wadsworth, Belmont, CA, 1985, pp. 749-768. | MR
[4] , , A decomposition for the likelihood ratio statistic and the Bartlett correction - A Bayesian argument, Ann. Statist. 18 (1990) 1070-1090. | Zbl
[5] , , Inference in hidden Markov models I: Local asymptotic normality in the stationary case, Bernoulli 2 (1996) 199-228. | Zbl | MR
[6] , , , Asymptotic normality of the maximum-likelihood estimator for general hidden Markov models, Ann. Statist. 26 (1998) 1614-1635. | Zbl | MR
[7] P.J. Bickel, Y. Ritov, T. Rydén, Hidden Markov model likelihoods and their derivatives behave like i.i.d. ones: Details, Techical Report, 2002.
[8] R. Douc, E. Moulines, T. Rydén, Asymptotic properties of the maximum likelihood estimator in autoregressive models with Markov regime, Preprint, 2001. | MR
[9] , Mixing. Properties and Examples, Lecture Notes in Statistics, 85, Springer-Verlag, New York, 1994. | Zbl | MR
[10] , , Maximum likelihood estimation and identification directly from single-channel recordings, Proc. Roy. Soc. London B 249 (1992) 125-132.
[11] , Rate of convergence in bootstrap approximations, Ann. Probab. 16 (1988) 1665-1684. | Zbl | MR
[12] , , Asymptotic normality of the maximum likelihood estimator in state space models, Ann. Statist. 27 (1999) 514-535. | Zbl | MR
[13] , A new approach to linear filtering and prediction problems, in: Linear Least-Squares Estimation, Dowden, Hutchinson & Ross, Stroudsburg, PA, 1977, pp. 254-264.
[14] , Maximum-likelihood estimation for hidden Markov models, Stochatic Process. Appl. 40 (1992) 127-143. | Zbl | MR
[15] , , Maximum-penalized-likelihood estimation for independent and Markov-dependent mixture models, Biometrics 48 (1992) 545-558.
[16] , Finding the observed information matrix when using the EM algorithm, J. Roy. Statist. Soc. B 44 (1982) 226-233. | Zbl | MR
[17] , , Hidden Markov and Other Models for Discrete-valued Time Series, Chapman and Hall, London, 1997. | Zbl | MR
[18] , A fast improvement to the EM algorithm on its own terms, J. Roy. Statist. Soc. B 51 (1989) 127-138. | Zbl | MR
[19] , Probabilistic functions of finite state Markov chains, Ann. Math. Statist. 40 (1969) 97-115. | Zbl | MR
[20] , A tutorial on hidden Markov models and selected applications in speech recognition, Proc. IEEE 77 (1989) 257-284.
[21] , , Limit Theorems for Large Deviations, Kluwer, Dordrecht, 1991. | Zbl | MR






