@article{AIHPB_2002__38_6_1039_0,
author = {Pollard, David},
title = {Maximal inequalities via bracketing with adaptive truncation},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {1039--1052},
year = {2002},
publisher = {Elsevier},
volume = {38},
number = {6},
mrnumber = {1955351},
zbl = {1019.60015},
language = {en},
url = {https://www.numdam.org/item/AIHPB_2002__38_6_1039_0/}
}
TY - JOUR AU - Pollard, David TI - Maximal inequalities via bracketing with adaptive truncation JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2002 SP - 1039 EP - 1052 VL - 38 IS - 6 PB - Elsevier UR - https://www.numdam.org/item/AIHPB_2002__38_6_1039_0/ LA - en ID - AIHPB_2002__38_6_1039_0 ER -
Pollard, David. Maximal inequalities via bracketing with adaptive truncation. Annales de l'I.H.P. Probabilités et statistiques, Tome 38 (2002) no. 6, pp. 1039-1052. https://www.numdam.org/item/AIHPB_2002__38_6_1039_0/
[1] , , A uniform central limit theorem for set-indexed partial-sum processes with finite variance, Ann. Probab. 14 (1986) 582-597. | Zbl | MR
[2] , , , , The central limit theorem and the law of the iterated logarithm for empirical processes under local conditions, Z. Wahrscheinlichkeitstheorie Verw. Geb. 77 (1988) 271-306. | Zbl | MR
[3] , Law of the iterated logarithm for set-indexed partial-sum processes with finite variance, Z. Wahrscheinlichkeitstheorie Verw. Geb. 70 (1985) 591-608. | Zbl | MR
[4] , , Functional law of the iterated logarithm and uniform central limit theorem for partial-sum processes indexed by sets, Ann. Probab. 12 (1984) 13-34. | Zbl | MR
[5] , , Rates of convergence for minimum contrast estimators, Probab. Theory Related Fields 97 (1993) 113-150. | Zbl | MR
[6] , Justification and extension of Doob's heuristic approach to the Kolmogorov-Smirnov theorems, Ann. Math. Statist. 23 (1952) 277-281. | Zbl
[7] , , , Invariance principle for absolutely regular processes, Ann. Institut H. Poincaré 31 (1995) 393-427. | Zbl | MR | Numdam
[8] , Central limit theorems for empirical measures, Ann. Probab. 6 (1978) 899-929. | Zbl | MR
[9] , Donsker classes of functions, in: , , , (Eds.), Statistics and Related Topics, North-Holland, Amsterdam, 1981, pp. 341-352. | Zbl | MR
[10] , , Probability in Banach Spaces: Isoperimetry and Processes, Springer, New York, 1991. | Zbl | MR
[11] , Rates of convergence in the central limit theorem for empirical processes, Ann. Institut H. Poincaré 22 (1986) 381-423. | Zbl | MR | Numdam
[12] , A central limit theorem under metric entropy with L2 bracketing, Ann. Probab. 15 (1987) 897-919. | Zbl | MR
[13] , Some applications of the metric entropy condition to harmonic analysis, in: Lecture Notes in Mathematics, 995, Springer, New York, 1983, pp. 123-154. | Zbl | MR
[14] , A User's Guide to Measure Theoretic Probability, Cambridge University Press, Cambridge, 2001. | Zbl
[15] , A uniform central limit theorem for partial-sum processes indexed by sets, in: , (Eds.), Probability, Statistics and Analysis, Cambridge University Press, Cambridge, 1983, pp. 219-240. | Zbl | MR
[16] , Covariance inequalities for strongly mixing processes, Ann. Institut H. Poincaré 29 (1993) 587-597. | Zbl | MR | Numdam





