@article{AIHPB_2002__38_4_581_0,
author = {Le Borgne, St\'ephane},
title = {Principes d'invariance pour les flots diagonaux sur {SL(d,R)/SL(d,Z)}},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {581--612},
year = {2002},
publisher = {Elsevier},
volume = {38},
number = {4},
mrnumber = {1914940},
zbl = {1009.60018},
language = {fr},
url = {https://www.numdam.org/item/AIHPB_2002__38_4_581_0/}
}
TY - JOUR AU - Le Borgne, Stéphane TI - Principes d'invariance pour les flots diagonaux sur SL(d,R)/SL(d,Z) JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2002 SP - 581 EP - 612 VL - 38 IS - 4 PB - Elsevier UR - https://www.numdam.org/item/AIHPB_2002__38_4_581_0/ LA - fr ID - AIHPB_2002__38_4_581_0 ER -
Le Borgne, Stéphane. Principes d'invariance pour les flots diagonaux sur SL(d,R)/SL(d,Z). Annales de l'I.H.P. Probabilités et statistiques, Tome 38 (2002) no. 4, pp. 581-612. https://www.numdam.org/item/AIHPB_2002__38_4_581_0/
[1] , Introduction aux groupes arithmétiques, Publications de l'Institut de Mathématique de l'Université de Strasbourg, XV. Actualités Scientifiques et Industrielles, No. 1341, Hermann, Paris, 1969. | Zbl | MR
[2] , Éléments de mathématique : groupes et algèbres de Lie. Chapitre 9. Groupes de Lie réels compacts. [Chapter 9. Compact real Lie groups], Masson, Paris, 1982. | Zbl | MR
[3] , Éléments de mathématique. Fascicule XXIX. Livre VI : Intégration. Chapitre 7. Mesure de Haar. Chapitre 8. Convolution et représentations, Actualités Scientifiques et Industrielles, No. 1306, Hermann, Paris, 1963. | Zbl | MR
[4] , , Representations of compact Lie groups, Graduate Texts in Mathematics, 98, Springer-Verlag, New York, 1995. | Zbl | MR
[5] , , , , , , Propriétés de mélange pour les groupes à un paramètre de SL(d,R), Séminaires de probabilités de université de Rennes 1, 1992. | MR
[6] , , , Statistical properties of two-dimensional hyperbolic billiards, Uspekhi Mat. Nauk 46 4 (280) (1991) 43-92, 192 (Russian) translation in: Russian Math. Surveys 46 (4) (1991) 47-106. | Zbl
[7] , , On the central limit theorem for dynamical systems, Trans. Am. Math. Soc. 302 (1987) 715-726. | Zbl | MR
[8] , Rational Quadratic Forms, Academic Press, 1978. | Zbl | MR
[9] , , Méthode de martingales et flot géodésique sur une surface de courbure négative constante, Ergodic Theory Dynam. Systems 21 (2) (2001) 421-441. | Zbl | MR
[10] , , Convergence des potentiels pour un opérateur de transfert, applications aux systèmes dynamiques et aux chaînes de Markov. Fascicule de probabilités, Publ. Inst. Rech. Math. Rennes, Univ. Rennes I, Rennes, 1998. | Zbl | MR
[11] Dolgopyat D., Limit theorems for partially hyperbolic systems, preprint. | MR
[12] , The central limit theorem for stationary processes, Soviet Math. Dokl. 10 (1969) 1174-1176, translation from Dokl. Akad. Nauk SSSR 188 (1969) 739-741. | Zbl
[13] , , Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d'Anosov, Ann. Inst. H. Poincaré Probab. Statist. 24 (1) (1988) 73-98. | Zbl | MR | Numdam
[14] , , Martingale Limit Theory and its Application, Probability and Mathematical Statistics, Academic Press, New York, 1980. | Zbl | MR
[15] , , Nonabelian harmonic analysis. Applications of SL(2,R). Universitext, Springer, New York, 1992. | Zbl | MR
[16] , , First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity, Inst. Hautes Études Sci. Publ. Math. 76 (1994) 131-156. | Zbl | MR | Numdam
[17] Kleinbock D.Y., Margulis G.A., Bounded orbits of nonquasiunipotent flows on homogeneous spaces, in: Sinaĭ's Moscow Seminar on Dynamical Systems, Amer. Math. Soc. Transl. Ser. 2, 171, pp. 141-172. | Zbl
[18] , Limit theorems for non-hyperbolic automorphisms of the torus, Israel J. Math. 109 (1999) 61-73. | Zbl | MR
[19] , The central limit theorem for the geodesic flow on noncompact manifolds of constant negative curvature, Duke Math. J. 74 (1) (1994) 159-175. | Zbl | MR
[20] , The central limit theorem for geodesic flows on n-dimensional manifolds of negative curvature, Israel J. Math. 16 (1973) 181-197. | Zbl | MR
[21] , The central limit theorem for geodesic flows on manifolds of constant negative curvature, Soviet Math. Dokl. 1 (1960) 983-987. | Zbl | MR
[22] , Counter examples to the central limit problem for stationary dependent random variables, Yokohama Math. J. 36 (1988) 70-78. | Zbl | MR
[23] , Harmonic analysis on semi-simple Lie groups. I., Die Grundlehren der mathematischen Wissenschaften, Band 188, Springer, New York, 1972. | Zbl | MR
[24] , Statistical properties of dynamical systems with some hyperbolicity, Ann. of Math. (2) 147 (3) (1998) 585-650. | Zbl | MR





