@article{AIHPB_1999__35_6_793_0,
author = {Blanchard, Gilles},
title = {The {\textquotedblleft}progressive mixture{\textquotedblright} estimator for regression trees},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {793--820},
year = {1999},
publisher = {Gauthier-Villars},
volume = {35},
number = {6},
mrnumber = {1725711},
zbl = {1054.62539},
language = {en},
url = {https://www.numdam.org/item/AIHPB_1999__35_6_793_0/}
}
TY - JOUR AU - Blanchard, Gilles TI - The “progressive mixture” estimator for regression trees JO - Annales de l'I.H.P. Probabilités et statistiques PY - 1999 SP - 793 EP - 820 VL - 35 IS - 6 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPB_1999__35_6_793_0/ LA - en ID - AIHPB_1999__35_6_793_0 ER -
Blanchard, Gilles. The “progressive mixture” estimator for regression trees. Annales de l'I.H.P. Probabilités et statistiques, Tome 35 (1999) no. 6, pp. 793-820. https://www.numdam.org/item/AIHPB_1999__35_6_793_0/
[1] and , Shape quantization and recognition with randomized trees, Neural Computation 9 (1997) 1545-1588.
[2] , and , Joint induction of shape features and tree classifiers, IEEE Trans. PAMI 19 (11) (1997) 1300-1306.
[3] and , Information theoretic determination of minimax rates of convergence, Department of Statistics, Yale University, 1997.
[4] , Are Bayes rules consistent in information? in: T.M. Cover and B. Gopinath (Eds.), Open Problems in Communication and Computation, Springer, Berlin, 1987, pp. 85-91.
[5] , Approximation dans les espaces métriques et théorie de l'approximation, Z. Wahrscheinlichkeitstheor. Verw. Geb. 65 (1983) 181-237. | Zbl | MR
[6] , "Universal" aggregation rules with exact bias bounds, Preprint of the Laboratoire de Probabilités et Modèles Aléatoires, Université Pierre et Marie Curie, available at http://www.proba.jussieu.fr/mathdoc/preprints/index.html#1999 (to appear in Annals of Statistics), 1999.
[7] , and , Bayesian CART model search, JASA 93 (1998) 935-947.
[8] and , Elements of Information Theory, Wiley Series in Telecommunications, Wiley, New York, 1991. | Zbl | MR
[9] and , Nonparametric Density Estimation: The L1 View, Wiley, New York, 1985. | Zbl | MR
[10] and , Predicting nearly as well as the best pruning of a decision tree, Machine Learning 27 (1997) 51-68.
[11] , and , The context-tree weighting method: basic properties, IEEE Trans. Inform. Theory 41 (3) (1995) 653-664. | Zbl
[12] , and , Context weighting for general finite-context sources, IEEE Trans. Inform. Theory 42 (5) (1996) 1514- 1520. | Zbl






