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ABSTRACT. - Let (Xn) be a recurrent Markov chain on Z~ with

Xo = (0,0) such that for some constant C, P[Xk = (0,0)] ~ ~ and
whose truncated Green function is slowly varying at infinity. Let L~ denote
the local time at zero of such a Markov chain. We prove various moderate

and large deviation statements and limit laws for rescaled versions of L~,
including functional versions of these. A version of Strassen’s functional
law of the iterated logarithm, recently discovered by E. Csaki, P. Revesz
and J. Rosen, can be derived as a corollary. @) Elsevier, Paris

Key words: Local time, Markov chain, large deviations, Strassen’s law.

Soit (Xn) une chaine de Markov recurrente sur ~2, avec
Xo = (0,0), telle que pour une constante C, (0,0)]  ~ et telle
que la fonction de Green est de variation lente a l’infini. Avec L~ Ie temps
local de zero, nous demontrons des resultats de grandes deviations
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688 N. GANTERT AND O. ZEITOUNI

et de deviations moderees pour certains changements d’échelle de L~, ainsi
qu’une version fonctionnelle. Comme corollaire, on note un theoreme du
logarithme itere fonctionnel de type Strassen, demontre recemment par
E. Csaki, P. Revesz, et J. Rosen. © Elsevier, Paris

1. INTRODUCTION AND STATEMENT OF RESULTS

Let (Xn) be a recurrent Markov chain on 7L2 with Xo = (0, 0), and let
g(n) := 2:~=0 (0, 0)] be the truncated Green function. We can
extend g to a continuous, increasing function g(t), t > 0. Since (Xn) is

recurrent, g ( t ) - oo for t - oo .
We will assume throughout that, for some positive constant C,

hence g(n)  C log n. We will also assume throughout that

g is slowly varying at oo , (2)
that is g(tx) /g(t) - 1 for any x > 0. Note that ( 1 ) is satisfied for

symmetric random walks on Z2, i.e. if = (y, z)] = P[Xi = -(y, z)],
see [6], Proposition 2.14. Since our results depend only on ( 1 ) and (2), they
might also apply to symmetric recurrent random walks on Z in the domain
of attraction of a Cauchy random variable.
We denote by L~ the local time of X at (0,0), i.e. L~ :=~{0  l~ 

> 

(0,0)} , ~ = 1 , 2, 3, .... It is known, see [6], (and will follow from the proof
of Theorem 1), that L° /g(n) converges in distribution to an exponential
distribution, i.e.

Our goal is to investigate the fluctuations of L~, and associated functional
laws.

THEOREM 1 (Moderate Deviations). - Let positive, non-

decreasing function such that

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



689DEVIATIONS FOR LOCAL TIME

Then satisfies a large deviation principle with speed
and rate function y.

We refer to [2] for the definition of a large deviation principle. Here, it
will be enough to show that

Theorem 1 is a moderate deviation principle since the speed can vary
without changing the rate function. Further, the rate function does not

depend on the distribution of pi.
The next theorem gives a large deviation principle for the distributions

of L~/~, with rate function which does depend on the distribution of pi.

THEOREM 2 (Large Deviations). - Let A* (y) = log 
and

Then the distributions of L° ~n satisfy a LDP with speed n and rate

function J.

Remarks

1. Comparing with Theorem 1, the large deviation principle holds for
. = 9~n) . In this case, qn = 1 and Theorem 1 does not apply.

Considering the proof of Theorem 2, it is easy to show that we have
a LDP whenever ~ - 0152, 0  0152  1.

2. Let po := = (0, 0)]. Then we have J(I) = - logpo if po > 0
and J ( 1 ) = o0 otherwise.

3. Let L° ( ~ ) be the linear interpolation of L? between integer points. We
believe (but have not checked the details) that the standard argument
(see e.g. [2], Section 5.1) allows one to conclude that the distributions

of satisfy a large deviation principle (in C[0,l]) with

Vol. 34, n° 5-1998.



690 N. GANTERT AND O. ZEITOUNI

rate function

J( f) == 10 J(f’(s))ds, f absolutely continuous with derivative f’

otherwise.+00, otherwise.

As usual, we can derive an Erdos-Renyi law from the large deviation
principle:

COROLLARY 1. - Let c > 0 and L0j), j =
0, 1, 2, ... , n - Then 

Lc log 
==

d~, a.s., where dc = J(y) 2 ~}.
For a random walk on Z, this complements results of [5].
We next turn to the appropriate functional statements. Let and ~

be as in the statement of Theorem 1, and let t ( n, x ) be a sequence of
positive, increasing (in n, x) functions satisfying, for any x e]0,1],

For example, if C log n, and - 0, we can take

t(n, x) = nx. If C log n and = n~, (0  ,~  1), we can take
t(n, x) = nx(1-03B2)+03B2. If Clog nand - 0, we can take

t(n,x) = e(log n)x (here and throughout, logk n denotes the k-th iterated
logarithm function). If C log2 n and 03C8(n) = nf3, (0  /3  1), we
can take t(n, x) = 

It is straightforward to check, using (5), that for 0  xi  ~2 ~ 1,
we have

Let

Note that Ln (x) E M+, the space of non-negative Borel measures on [0, 1] .
Equip M+ with the topology of weak convergence. Our main functional
statement is the following:

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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THEOREM 3 (Functional Moderate Deviations). - Ln (x) satisfies in M+ a
large deviation principle with speed and rate function

As in the one-dimensional case, we can deduce convergence in

distribution from our large deviation bounds, taking 1.

THEOREM 4 (Functional Limit Law). - Let t(n, x) be such that g(t(n, x)) r-v

xg( n), x E [0, 1]. The distributions of ( converge weakly to

~c E the distribution of the process with increasing
paths and independent increments given by

for any 0 ~ xi  x2  1, B Borel subset of ~0, oo~.
J. Bertoin kindly pointed out to us that in fact the process

in Theorem 4 is a pure jump process which can be

constructed from an inhomogeneous Poisson point process. Indeed,
one may construct a Poisson point process z) on [0,1] x IR~
with intensity n(x, z)dxdz = ~-2 exp(-z/x)dxdz and define 

Obviously, possesses increasing paths and

independent increments. Moreover, it is not hard to check, using the

identity valid for any c~/3 > 0,

that for any 03BB ~ 0,

proving that the processes and have the same law.

We close this section by mentioning that the functional moderate

deviations of Theorem 3 are strong enough to derive by standard arguments
the following Strassen law of the iterated logarithm presented in [ 1 ],
Theorem 5. Obtaining such a derivation was actually the original motivation

Vol. 34, n° 5-1998.
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for this work. Since the arguments are standard, see [3], Theorem 1.4.1,
we do not provide a proof.

THEOREM 5 (E. Csaki, P. Revesz and J. Rosen). - Let t(n, x) be
such that xg(n), x E [0, 1]. The set ( 
n large enough, is relatively compact in M+ with limit points K, where
K = {m : 1}.

2. PROOFS

We begin by stating some simple bounds on g(n).
LEMMA 1. - We have

and

Proof of Lemma 1. - We have

where C’ is some (fixed, depending on C) constant. The limit (8) follows
by dividing by g ( ng ( n ) ) and using the monotonicity of g(.). The proof
of (9) is analogous. D

Lemma 1 is needed for the following crucial estimate for the tail of the
distribution of the ,excursion pi. For a m.ore precise statement, which we
do not need here, see [6].

PROPOSITION 1

and

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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Proof of Proposition 1

1. A last exit decomposition gives

Since = 0] ~ P~L° = 0], k = 0, 1, ..., n, this implies
g(n)P~L° = 0] ~ 1, hence

2. In the same way,

hence 1  = 0] + g(~r,) - g(k), so

Choose k = k(n) = n - 20142014 , and note that, for some C’, C" > 0,

This, together with (9) of Lemma 1, yields the proposition. D

Proof of Theorem 1. - We begin with a quick proof of the lower bound
in (4). Let Yl, Y2, ... be i.i.d. with the same distribution as pl. Then

Vol. 34, n° 5-1998.
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Now apply Proposition 1 and the fact that g(.) is slowly varying to get

We next turn to the proof of the upper bound. We follow the standard
strategy to apply Chebycheff’s inequality and to optimize over the

parameter. Due to Chebycheff’s inequality,

for each An > 0. Recall q~ == Taking logarithms and dividing
by 9(")J/l’16’l) ( 1 1 ) yields

Next we show that for each 8 > 0, and Cn > 0 large enough, we have

indeed, observe that

where we used Proposition 1 in the last inequality.
Substituting this estimate in (12), we get

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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Choose = = Cn with ~,7T > 0. Then the r.h.s.

of (14) is 
"

Due to Lemma 1 and the fact that g(.) is slowly varying,
----+ 1. Hence ( 14) and ( 15 ) yield

and the upper bound follows by letting 8 - 0, K’ - oo, -~ 2014~ 0. D

Remark. - In particular, taking in the proof of the upper and the lower
bound 1, we have

Together with (9) in Lemma 1, this implies that for y > 0,

as noted in (3).

Proof of Theorem 2. - Note first that > ~~~ - ~ if y > 1. As in

the proof of Theorem 1, we have

But

so we ask about large deviations of the arithmetic mean of a sequence of
i.i.d. random variables. Cramefs theorem (see [2], Theorem 2.2.3) implies
that the distributions of (or Yi) satisfy a LDP with

Vol. 34, n° 5-1998.
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speed (or fnyl) and rate function A* . Note that Yi > 0, E[Yi] = o0
hence A* (y) - 0 for y - oo. Since we have

and 2014~ y, the claim follows. D~ 

In order to prove Corollary 1, we need the following preliminary
proposition.

PROPOSITION 2. - Let - 0, ~ ~. Then, for > 0,
1 pr ~~ ~ ~1 _. ~~r~)~) ~ 
Proof of Proposition 2
1. We have

where we used Proposition 1 in the last inequality. Since 1 - z 
- log z, the last term is

Hence

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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Provided that

(16) implies that

But ( 17) holds true since

and .~~ )) --+ 1 due to Lemma 1.~(~/~(~))~~oo
2. 

Now we use the inequality (0  z  1 ) with
z - (1 - P[Y1  n]) to get

Proposition 1 implies that

and therefore

We conclude from (19) that

Vol. 34, n° 5-1998.
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Proof of Corollary 1

1. Let d E IR, J(d) > ~ , choose 8 > 0 such that J(d) - 8 > ~ , and
fix any d’ > d. We show that

P[ sup > d’ for infinitely many n] = 0 . (20)
log 

Let (log where 03B3 > 1. Since we can take the sup
in over those j with Xj = (0, 0) only,
without changing the value, and since has the same distribution
as for those j, we have

Now we have to estimate the terms on the r.h.s. of (21):

for n big enough, due to Theorem 1 and

for n big enough, due to Theorem 2.
Let A > 1, no = 0 and = 1,2,.... Then we see
from (22) and (23), applying the Borel-Cantelli lemma, that

P[ sup > d for infinitely many k] = 0 .

In other words, we have proved (20) along the subsequence (nk)
with d replacing d’. Let n~  n  nk+i and observe that, for

j = 0, 1 , ... , n - [c log

For k big enough,  d implies  d’ . This completes the
proof of (20).

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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2. Let d E IR, J(d)  1 c. Choose 8 > 0 and 03BB > 1 such that

A(J(d) + 8)  ~ . We will construct a subsequence nk such that

P[ sup  d for infinitely many k] = 0. (24)
log 

Fixing n, let jg := 0, j~ .- inf{j : j > + =

(0,0)}, ~’~ := = n~ and ~In :=

{~? -’’ ~M~-i}’ Then are i.i.d. with the same distribution

as Let to be determined below, satisfy the assumptions
of Proposition 2. We have

But, for eaeh S > 0, and all n large enough,

for n large enough, where we used Proposition 2 in the last inequality.
Turning now to the second term in (25), we first note that, by
Theorem 2, for all n large enough,

for n large enough, where /3 :== c(J(d) + 8)  1. Hence

for n large enough. Considering (26) and (27), it remains to specify a
subsequence (n k) and a posi ti ve function 03C8( .) such that 03C8 (n) ---7 0,

n->

---7 00 and
n->

Then, (24) follows from (25), (26) and (27) together with the Borel-
Cantelli lemma. We finish the proof by observing that (28) and (29)

Vol. 34, n° 5-1998.
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are satisfied for nk = g-I(2k) and = log where

o  ’r  1 - {3. 0

Proof of Theorem 3. - We begin by proving a finite distribution result,
from which the required LDP will follow by standard projective limits
arguments. Note first that for 0 = xo  xi  x~  ...  ~ ~ 1, and
0 = ao  a2  ~ ~ ~  a~  oo, and with Yi as in the proof of
Theorem 1,

Write = then for any 6 > 0 and n

large enough,

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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where the last inequality holds for n large enough and follows from the
proof of the upper bound in Theorem 1. Therefore, using the assumption (5),

Taking now 6 - 0 yields

proving a finite dimensional upper bound.
We next turn to a complementary lower bound. We first show that

Indeed, assume w.l.o.g. aj-i  aj, j - 1,2,’-’~. We have, setting
Wn,3 ~" 

Vol. 34, n° 5-1998.
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Observe that for j - 1 , 2 , ... , n

where the last inequality is due to Proposition 1. Note that due to (5) and (6),

(31) now follows from (32), (33) and (34).
In the second step, we prove that, for 0  b  =

1, 2 , ... I~ ~ we have

To prove (35), observe that

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Since

due to the first step, it is enough to show that for f = 1 , 2, ... , k we have

But, using the upper bound (30), we have

where we used 28 - 2s > 0 in the last inequality. This completes the
proof of the lower bound.

It now follows from (30) and (35) that for 0  xi  ...  1, the
random satisfies in IRk the LDP with good rate function

where yo := 0. By [2], Thm 4.6.1 (see Section 5.1 in [2] for a similar

argument), we have that the random monotone function 
satisfies the LDP in M+ ( ~0, l~ ) (with M+ ( (0, l~ ) denoting M+([0, 1])
equipped with the topology of pointwise convergence) with good rate
function

Vol. 34,n° 5-1998.
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It then follows by monotone convergence that

Finally, note that the topology in M+ ( ~0, 1]) is stronger than the topology
in M+ ( [0, 1]), which concludes the proof of the theorem by an application
of [2], Corollary 4.2.6. D

Proof of Theorem 4. - Let 0 = ao  al  ...  1 as before. Recall
that with ~(~) = 1, (30) and (31) imply that

But sets of the form A = ~ f : f(xj) > aj, j = 1,2,..., ,1~~ generate
the Borel a-field on M+, hence in order to prove convergence of the
finite-dimensional marginals of 20147~ to those of Zx, we only have to
check that

which follows from an explicit computation using (7). Tightness of the
distributions of L0i(n,.) g(n) is immediate from Prohorov’s theorem. D
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