@article{AIHPB_1998__34_5_567_0,
author = {Boivin, Daniel},
title = {Ergodic theorems for surfaces with minimal random weights},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {567--599},
year = {1998},
publisher = {Gauthier-Villars},
volume = {34},
number = {5},
mrnumber = {1641662},
zbl = {0910.60078},
language = {en},
url = {https://www.numdam.org/item/AIHPB_1998__34_5_567_0/}
}
TY - JOUR AU - Boivin, Daniel TI - Ergodic theorems for surfaces with minimal random weights JO - Annales de l'I.H.P. Probabilités et statistiques PY - 1998 SP - 567 EP - 599 VL - 34 IS - 5 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPB_1998__34_5_567_0/ LA - en ID - AIHPB_1998__34_5_567_0 ER -
Boivin, Daniel. Ergodic theorems for surfaces with minimal random weights. Annales de l'I.H.P. Probabilités et statistiques, Tome 34 (1998) no. 5, pp. 567-599. https://www.numdam.org/item/AIHPB_1998__34_5_567_0/
[1] and , Ergodic theorems for superadditive processes, J. Reine Angew. Math., Vol. 323, 1981, pp. 53-67. | Zbl | MR
[2] , , , and , On a sharp transition from area law to perimeter law in a system of random surfaces, Comm. Math. Phys., Vol. 92, 1983, pp. 19-69. | Zbl | MR
[3] and , Asymptotic Expansions of Integrals, Dover Publications, 1975. | Zbl | MR
[4] , Weak convergence for reversible random walks in a random environment, Ann. Probab., Vol. 21, 1993, pp. 1427-1440. | Zbl | MR
[5] , First-passage percolation: the stationary case, Probab. Th. Rel. Fields, Vol. 86, 1990, pp. 491-499. | Zbl | MR
[6] , Ergodic theory and translation invariant operators, Proc. Nat. Acad. Sci. USA, Vol. 59, 1968, pp. 349-353. | Zbl | MR
[7] and , Some limit theorems for percolation processes with necessary and sufficient conditions, Ann. Probab., Vol. 9, 1981, pp. 583-603. | Zbl | MR
[8] and , Counterexamples in Ergodic Theory and Number Theory, Math. Ann., Vol. 245, 1979, pp. 185-197. | Zbl | MR
[9] , Thèse de doctorat, Université de Bretagne Occidentale, 1994.
[10] , Lecture Notes on Particule Systems and Percolation, Wads-worth & Brooks/Cole, 1988. | Zbl
[11] and , Bounds for effective parameters of heterogeneous media by analytic continuation, Comm. Math. Phys., Vol. 90, 1983, pp. 473-491. | MR
[12] and , First-passage percolation, network flows and electrical resistances, Z. Wahrsch. verw. Gebiete, Vol. 66, 1984, pp. 335-366. | Zbl | MR
[13] and , Asymptotic shapes for stationary first passage percolation, Ann. Probab., Vol. 23, 1995, pp. 1511-1522. | Zbl | MR
[14] , A simple proof of the ergodic theorem using non-standard analysis, Israel J. Math., Vol. 42, 1982, pp. 284-290. | Zbl | MR
[15] , Ergodic theory and subshifts of finite type. In Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces, Oxford University Press, 1991. | Zbl | MR
[16] , Surfaces with minimal random weights and maximal flows: A higher dimensional version of first-passage percolation, Illinois J. Math., Vol. 31, 1987, pp. 99-166. | Zbl | MR
[17] , Percolation theory and first-passage percolation, Ann. Probab., Vol. 15, 1987, pp. 1231-1271. | Zbl | MR
[18] , Aspects of first-passage percolation, Lecture Notes in Math., Vol. 1180, Springer, New York, 1986, pp. 125-264. | Zbl | MR
[19] , The method of averaging and walks in inhomogeneous environments, Russian Math. Surveys, Vol. 40, 1985, pp. 73-145. | Zbl
[20] , Ergodic Theorems, de Gruyter Studies in Mathematics 6, de Gruyter, Berlin, 1985. | Zbl | MR
[21] , Fourier transforms of surface-carried measures and differentiability of surface averages, Bull. of the AMS, Vol. 69, 1963, pp. 766-770. | Zbl | MR
[22] , Random growth in a tesselation, Proc. Cambridge Philos. Soc., Vol. 74, 1973, pp. 515-528. | Zbl | MR
[23] , Maximal functions and Fourier transforms, Duke Math. J., Vol. 53, 1986, pp. 395-404. | Zbl | MR
[24] , Applications of Functional Analysis in Mathematical Physics. Translations of Mathematical Monographs, American Mathematical Society, Vol. 7, 1963. | Zbl | MR
[25] and , Problems in harmonic analysis related to curvature, Bulletin of the AMS, Vol. 84, 1978, pp. 1239-1295. | Zbl | MR
[26] , Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton University Press, 1993. | Zbl | MR
[27] , The ergodic theorem, Duke Math. J., Vol. 5, 1939, pp. 1-18. | Zbl | JFM





