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ABSTRACT. - Consider a subset A of Hilbert space H, on which the
canonical Gaussian process is bounded. Consider a family U of linear
operators on H. Fernique found natural conditions under which the

canonical Gaussian process remains bounded on U(A) = ~~c(a); u 
a E A ~ . We provide applications, variations and refinements of this result.
For example, we prove the following: if .~’ is a Donsker class of functions
on a probability space, if C is a Vapnik-Cervonenkis class of sets, the class
of functions of type f1C ( f E F, C E C) is Donsker. We also combine

new entropy estimates in ergodic theory with Fernique’s result to obtain
recent results of Weber.

RESUME - Applications d’un theoreme de Fernique. Soit A un
GB-ensemble d’un espace de Hilbert, c’est-à-dire un ensemble où le

processus canonique Gaussien reste borne. Soit U une famille d’opérateurs
linéaires sur H. Fernique a propose des conditions naturelles sous lesquelles
Ll ( A) _ ~ u ( a j ; u E U, a E A~ demeure un GB-ensemble. Nous proposons
des raffinements et des applications de ce résultat. Nous montrons par
exemple que si .~’ est une classe de Donsker de fonctions sur un espace
probabilisé, et si C est une classe de Vapnik-Cervonenkis d’ensembles, la
classe des fonctions du type f1C pour f E 0, C E C, demeure une classe
de Donsker. Dans une direction tout à fait differente, nous montrons ce qui
est sans doute le résultat principal de l’article. Il existe un nombre K tel
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780 M. TALAGRAND

que si T est une contraction d’un espace de Hilbert, si x est un vecteur de
norme au plus 1, alors pour 0  ~  1, on peut recouvrir l’ensemble de
tous les vecteurs Yn = n-1 pour n > 1 par au plus KE-2
boules de rayon E. Combine avec le résultat de Fernique, cela permet de
retrouver sans peine des résultats récents de Weber.

1. INTRODUCTION

On a Hilbert space H is defined a canonical Gaussian process (Xt)tEH,
the so called isonormal process of covariance (s, t). It became
apparent in the late 60’s that the understanding of which general Gaussian
processes are sample bounded (resp. sample continuous) was equivalent to
the understanding of the subsets A of H on which the restriction on the
isonormal process is sample bounded (resp. sample continuous). These sets
have been called GB (resp. GC) sets ever since. The study of the GB and
GC sets culminated in their characterization (in 1985) through majorizing
measures [Tl] ] a result on which most of the present work relies.

Since majorizing measures are not easy to construct (or even to

understand) this is however not the end of the story. Throughout this

paper, we will measure the size of a GB set A by the natural quantity

The reader who worries about this potentially tricky supremum of possibly
uncountably many random variables can assume A finite, and will lose

nothing of the strength of the results we present.
We consider a family U of operators on H. For simplicity we assume

they are contractions (i.e. of norm::; 1). It would actually suffice that U is
equicontinuous (i. e. the norms of the elements of U are uniformly bounded)
but this reduces to the previous case and requires one extra parameter.
We set

What would be really nice to have is the inequality
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781APPLYING A THEOREM OF FERNIQUE

where of course U(a) = LI (~a~), and where K denotes, as in the entire
paper, a universal constant (not necessarily the same at each occurrence).

Unfortunately, as will be shown in Section 3, (1.3) does not hold in

general, and one has to replace G (U ( a )) by a somewhat larger quantity,
that we introduce now.

Given a metric space (T, d), we recall that N(T, d, E) denotes the smallest
number of (open) balls of radius E needed to cover T. Given a E A, we
consider the distance c!a on U given by

THEOREM 1.1. - (Fernique For all families U ofcontractions, we have

Since by the so called "metric entropy bound"

(1.5) is certainly weaker than (1.3).
It must be said that the principle used in Theorem 1.1 can be formulated

in more general situations; but the somewhat restricted setting we use here
seems appropriate for the present purposes.
While (1.3) does not hold in general, it turns out that if one controls the

quantity G(Ll (a) ), not only when a E A, but when ~a~  1, one can use
this quantity rather than the entropy integral of (1.5).

THEOREM 1.2. - For all A C H, all families U of operators, we have

The simple proof of Theorem 1.2, that will be given in Section 2, leaves
considerable room. For example, setting a = the same proof

xEA
shows that

Vol. 32, n° 6-1996.



782 M. TALAGRAND

However, an elegant common extension to Theorem 1.1 and Theorem 1.2
remains to be found.

In Section 4, we will show how either Theorem 1.1 or Theorem 1.2

imply recent results of Weber related to Ergodic theory. This application
will be based on the following estimate, that is conceivably the main result
of the present paper. Consider an isometry T of H, and set

THEOREM 1.3. - For some universal constant K, any isometry U and any
x E H, we have, for all 0  E 

In Section 5, we will apply either Theorem 1.1 or Theorem 1.2 to the
theory of Donsker classes. (A Donsker class F of functions is essentially a
class where the central limit theorem holds uniformly). The most noticeable
feature of the next result is that it holds without extra conditions on F.

THEOREM 1.4. - If F is a Donsker class of functions on a probability space,
and’ C is a Vapnik-Cervonenkis class of sets, the class of functions of the type
flc ( f E F, C E C) is a Donsker class of functions (under measurability).

It turns out that the natural proof of Theorem 1.1 yields a somewhat
stronger result. While this strengthening does not seem to be relevant in
any conceivable application, it does have some theoretical interest. For a

metric space (T, d), we introduce the quantity

where B’(t, 27E) is the d-ball centered at t, of radius 27E. It is obvious that
S(T, d) is dominated by the metric entropy integral

It is however simple to construct situations where I(T, d) = oo but

S(T, d)  oo. The reader who wishes to truly understand majorizing
measures and abstract Gaussian processes should complete the mostly
routine proof of the fact that for A c H, we have
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783APPLYING A THEOREM OF FERNIQUE

where d denotes the distance induced by the norm, and should construct
examples where G(A)  ~, S(A, d) = oo.
The quantity S ( A, d) can be seen as a kind of intermediate measure of

the size of A between G(A) and I (A, d), and it is actually rather different
from either of these. In Section 6, we will prove the following refinement
of Theorem 1.1.

THEOREM 1.5. - For all A C H, all families ?~ of operators, we have

2. PROOF OF THEOREM 1.2

It is not known at the present time how to prove any result in the line
of Theorem 1.1 without relying upon the majorizing measure theorem of
[Tl]. The form of the theorem we use (see [T3 section 2]) is as follows.
Consider the largest integer no with 2-n° > diamA (when working with
subsets of H the distance we use is always induced by the norm.) Then we
can find an increasing sequence of finite partitions of A such that
each element of Bn has diameter  2-n, that ,~n° _ ~,A~, and a probability
measure p on A such that, if for a E A, we denote by Bn (a) the unique
element of Bn that contains a, we have

Conversely, for any such probability measure p on A, and any increasing
sequence of partitions such that each element of Bn has diameter at most
2-n we have

A rather minor modification of the argument that gives (2.2) will prove
Theorem 1.2. The basic argument is as follows.

LEMMA 2.1. - Consider subsets of H, and assume that Ci is
contained in the ball centered at the origin of radius ~i. Then

Vol. 32, n° 6-1996.



784 M. TALAGRAND

The following special cases will be used. First, the case where Ri = R
for all z  p. Then (separating the case p = 1), (2.3) becomes

Second, when Ri = R2-i, (2.3) becomes

Proof. - We set Zi = suptEC2 Xt. The key point is the deviation

inequality of [I-S-T]

so that, setting .

where R = maxi~p Ri. Thus, if Z = supi~p Zi, we have

and by a routine argument,

from which (2.3) follows. D

We start the proof of Theorem 1.2. There is no loss of generality to
assume that A is finite. We find m large enough that

and we set

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques



785APPLYING A THEOREM OF FERNIQUE

We show by decreasing induction over n  m that

This is certainly true for n = m since the left-hand side is zero; and for n =
no, this implies Theorem 2.1 since G(U(B) )  G(U(B - x)) + G(U(x)),
since G(U(x))  for x E B, and since B = A for B E Bno’

xEB

Assuming that (2.6) holds for n, we start the proof that it holds for
n - 1. Consider B’ in and enumerate the elements of Bn it contains
as We can pick this enumeration in a way that the sequence

decreases. We then have G 1/i, so that

The key of the argument is that, for some universal constant Kl, and
any x E B’,

This follows from (2.4) and the fact that

Consider now, for i  p, a point Xi in Bi . Thus

We also observe that, by (2.7), and since Bn (t) = Bi for t E Bi, we have

Thus, (2.6) is proved by induction, provided K > max(2, The proof
of Theorem 2.1 is complete. D

Vol. 32, n° 6-1996.



786 M. TALAGRAND

3. AN EXAMPLE

The purpose of this section is to provide an example showing that (1.3)
does not hold in general.
We consider an integer p, and, p, we consider an integer 2.

(The values of these will be specified later.) For 1  I~  p, we set

Thus, an element T of Rp is a sequence (Tl , ~ ~ ~ , T~ ) of integers, with
Tk  nk . We will denote by T I k the truncated sequence (Tl , ... , E Rk.

In a fixed Hilbert space, we consider an orthonormal family of vectors
ep, p E U Rk. Consider a number r > 2. For T E Rp, we set

A-p

We set A E It is a simple matter to check that

where mk = nl ... n~. For T E let us consider an isometry UT of
the Hilbert space, with the following property. For we have

U T ( e p) = 0 if either k = p or if T I k. If p = T I k, and k  p - 1,
we have UT (eP) = where denotes of course the vector

E Rk+i being the sequence pl. ~ ~ ~ , Pk, 

We consider the family U of the isometries UT, T E Rp. The set U(A)
contains in particular the vectors YT == and

(the term +1 in the exponent is crucial).
It is a simple matter (related to (3.1)) to see that

Next, given T E Rp, we set

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



787APPLYING A THEOREM OF FERNIQUE

and we aim to estimate G(XT) from above. We set, for 1  q  p,

For cr E the vector depends only upon + 1. Thus the

E consists of nq+1 - 1 vectors, each of which within

distance 3 . r-q of Ur(xr). It is then a simple matter to see (using (2.5))

It remains to choose the parameters. We take nk such that r~,
and we take p = r. Thus,

while G(U(A)) > r2/I~. As r is arbitrarily large, this completes the

construction.

The reader might like to note that in this case the entropy integral of
(1.5) is of order r.

4. A THEOREM OF WEBER

If U is an isometry of H, if Un is given by (1.8) and n > 1 ~,
it follows from Theorem 1.3 and either Theorem 1.1 or Theorem 1.2 that

This had been proved earlier by Weber [W] in the special case where
H = P) and T is induced by an ergodic transformation of S~.

(Weber’s result partially motivated the present paper.)

Proof of Theorem 1.3. - There is no loss of generality to assume ~x ~ = 1.
By the spectral theorem (e.g. as in [K] p. 94) there is a probability measure
~c on ~-~-, ~r] such that

for all n, m in Z, where (-,’) denotes of course the scalar product in H.
Thus, if we set

Vol. 32, nO 6-1996.
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it follows from (5.1) that whenever 1, we have

For .~ > 0, consider the set

Consider the sequence

so that  3, and
e>o

unless a~. = 0 for all k, so that p is a point mass at zero and Tx = x. We
now fix 1 > E > 0 once and for all.

By (5.3), the sequence bm22rn increases to infinity unless Tx = x,
an uninteresting case. Thus, for 1~ > 1, there exists a smallest integer

1 such that

It is a simple matter to deduce from (4.3) that

We now construct a subset F of N as follows. For n E N, n > 1,
consider k such that 2~  n~  2k+l. We define

We put n in F whenever, for some p > 1, we have f (n -1)  pE2, f (n) >
pE2. Observe in particular that when > E2 the interval ~2 ~ , 2 ~ + 1 ~
contains about points of F that are about evenly distributed. We
will show two things:

(4.7) For each n > 1, there exists m in F such ]  .KE.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Together these two facts prove Theorem 1.3.

First, we note that if = 1, we have 22k’E2  4bi G 12. Thus, the
number of values of k; for which this holds is certainly  When

> 1, the definition of m(k) shows that

It then follows that, since  2b~.,.z~~~ _ l,

and thus m(k + 2) > m(k). Thus we have

and this proves that f(n)  6 and hence (4.6).
We turn to the proof of (4.7).

LEMMA 4.1. - We have the following:

Proof - Since (4.9) is obvious we prove only (4.10). Consider the
function

Thus

Now,

so that ~cp’(u)~ [  KB2 if  1. On the other hand, if > 1, then

so that in any case ~cp’(u)~ [  K ()2. Thus

and the result follows since

Vol. 32, n° 6-1996.
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Consider n E N, n > 1, and k such that 2~  n  2~+1. Consider the
largest integer p such that pE2  f (n), (so that f (n)  (p + 1) c2) and the
smallest integer n’ such that f (n’ ) > pE2 . By definition, n’ E F, and we will
show that Un~  KE. Consider k’ with 2~’  n’  2~’+1.
Thus k’  k. Then

We now observe that

To prove (4.12), we first observe that, combining (4.3), (4.5), we have
 K. Thus (4.12) is obvious from (4.11) if either

k’ = k or l~‘ = 1~ - 1. But if k’  ~ - 1, then (4.11) implies  E2,
so that  KE2 and (4.12) follows.

To prove (4.13), we can assume k’  k - 1. It is then a consequence of

(4.3), (4.5) and > 

We set

so that we try to control ~ ~ ~ o c~ . If .~  we use (4.9) and the

inequality lu + Vl2  2~u~2 + 2~v~2 to get

so that

where we have used (4.3) and (4.8).

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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If  ~  m(A;), we use the trivial bound I  1 to get

using af and (4.13).
If l  we use (4.10) to get

so that

using (4.3). But, using (4.12)

using (4.8). Thus

Combining with (4.14), (4.15), we have shown that U,r,,~ (~) ( ~ 
KE. D

Remark. - Both M. Weber and an anonymous referee pointed out to me
that Theorem 1.3 holds as well for all contractions of Hilbert space rather
than just isometries. Indeed, in that case, by a dilation theorem of Sz. Nagy,
(4.2) still holds (with inequality rather than equality).

5. DONSKER CLASSES

Donsker classes are characterized by numerous equivalent properties. We
will recall only the technically useful (but uninspiring) characterization we
need, and refer the reader to [G-Z] for more material.

Vol. 32, n° 6-1996.
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Consider a probability space (f2, P), and an i.i.d. sequence of 03A9 valued
r.v. (Xi) of law P. Consider a sequence (gi ) of standard Gaussian r.v.
A class .~’ of functions on f2 (that we assume to be countable to avoid well
understood measurability problems) is called a Donsker class if .~’ c 
and if, for any 8 > 0, we can find a finite covering (.~’~ ) of .~ such that

We recall that a class C of subsets of f2 is called a VC (=Vapnik
Cervonenkis) class (of dimension  d), if it does not shatter any subset F
of cardinality d, that is, for any subset F of f2, cardF = d, at least one
subset of F is not of the type C n F, C E C.
The crucial property of VC classes is as follows.

LEMMA 5.1. - Consider a VC class D of subsets of SZ of dimension at
most d, and points of SZ. Consider numbers . We define

Then, given Do E D, we have

Proof. - We have to evaluate E sup where the Gaussian process
DED

XD indexed by D is given by

The canonical distance 8 associated to the process is given by

where the probability v is given by v ( ~ x.i ~ ) = a2 ~ a2 . The diameter of ( D , 8)
is at most 2b; moreover Dudley [D] proved that the maximal cardinality
of a subset Z of D such that

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



793APPLYING A THEOREM OF FERNIQUE

is at most (KE)-2~ (this is a weak form of the result, that is sufficient

here). Thus

and bounding of the left-hand side of (5.2) by the entropy integral
2b0 log N(D, > b > E ) dE yields the result.

LEMMA 5.2. - Consider a VC class C of subsets of 03A9, of dimension  d.
Consider a function f in and consider ~y > 0. Then there is a finite
partition (Ck) of C with the following property:

Proof - We first observe that, by Lemma 5.1, if we denote by E~
conditional expectation given Xi, we have

Thus, by the law of large numbers, (5.3) holds for any partition (Ck)
whenever ~~ f ~~z  Thus, by truncation we can reduce to the case
where ,f is bounded.

We now show that it suffices to decompose C is such a way that

is sufficiently small. (That such a finite partition exists is a consequence
of a result of Dudley used before.)

Let us consider the r.v.

Thus

Vol. 32, n° 6-1996.
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It follows from a standard argument (brought to light in [G-Z]) that

The collection of all sets CAD(C, DEe) is still a VC class of dimension
 Kd. Thus, by Lemma 5.1 and the bound £ 

i_n 
we have

Setting an (X ) _ ~ f 2 ~ ~ t ~ , it follows from Lemma 5.1 again that
in

The purpose of this brutal last bound is that by Cauchy-Schwarz,

has a limsup, oo, at most and this concludes the

proof. D

We now prove Theorem 1.4. Consider 6 > 0. We have to produce an
appropriate finite partition of the class of functions F, C E C
that witnesses (5.1). Since F is a Donsker class, there is a finite partition

of F such that

For each k, we fix fk E :Fk. Since F C L2, by Lemma 5.2, there is a
finite partition of C with the property

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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We fix CR E CR. We are done if we can prove that, for each 1~, .~

We write

We set

It follows from (5.6) that we are reduced to prove that lim sup EWn (X ) 
The key is to apply Theorem 1.2 to estimate the expectation E~ at

Xl ; ~ ~ ~ , Xn given. The basic Hilbert space is .~n; the set A = Ak,n(X) is

To each C E C~, we associate the contraction !7~ given by
We set U = C E It follows from

Lemma 5.1 that, for a 

We also observe that

Thus, by Theorem 1.2, we have

That lim sup EWn (X )  Kd03B4 is then a consequence of (5.5). D

Vol. 32, n° 6-1996.
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6. PROOF OF THEOREM 1.5

The method is to construct a probability measure v on U x A, the image
of which under the natural map from U x A into U(A) will witness that
G(~l (A) ) is bounded by the right-hand side of (1.10) through the majorizing
measure bound. It makes the proof somewhat clearer to construct, as well
as v, an increasing family (en) of finite partitions of U x A. We recall
the increasing sequence of partitions of A used in the proof of
Theorem 1.2 (and the measure  on A). We denote by mo the largest
integer  no such that

and we set Cmo = {U x A~ . For mo  n  no, we set Bn = Bno = ~ A~ .
For each n > mo, each set of Cn will be of the form W x B, where B E 
and we now describe the process by which the sequence Cn is inductively
constructed. Assuming that Cn-l has been constructed, an element of Cn- i
is of the type W’ x B’ ( B’ E and we have to partition this element
into elements of C.n . First, we partition B’ into elements of Bn, and then
we have to show how to partition a set of the type W’ x B ( B E 
For this purpose we choose one arbitrary element a of B, and a maximum
subset Z of W’ that is 3 ~ 2-’t separated for da (i.e. any two points of Z
are within distance > 3 . 2-n). The balls of radius 3 . 2-n (for da) centered
on Z cover W’. Thus we can find a partition of W’ into sets of diameter
 ~ ~ 2-n for d~z that refine this covering. We fix such a partition, and this
completes the construction. To discuss the properties of the construction,
we denote by W x B an element of Cn contained in W’ x B.
We observe that whenever b G B, then Z is 2-n separated for db. This

is a consequence of the fact that B has diameter  2-n, and that

since U, V are contractions.
We also observe that, by the same argument, for each b in B, W is of db-

diameter at most 8.2-n. Thus we see by induction that for a set W’ x B’ of
and b in B’, the set W’ is of db-diameter at most 8 2-7z+1 = 2-n~+‘~.

Thus W’ is contained in the ball of center t and db-radius 2-n+‘~ whenever
t E W’. In particular the points of Z are contained in this ball; since they
are 2-n separated we have

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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We observe that by our construttion, cardZ depends only on W’ x B,
so only on W x B. We set 

--

so that

For sets of Cn, we now define the "weights" wn as follows, by induction

x B c W’ x B’, we set

Since ~ ,u(B)  ~c(B’)  1, where the sum is over all B E An , B C B’ E
An-i, and by (2.4), we see by induction that for each n,

It follows that there is a probability measure v on U x A such that

Consider the image r~ of v under the map (U, a) -~ U(a), and consider
s G U(A). By the Preston-Fernique majorizing measure bound (see [L-T]
ch. 12) it suffices to prove

We can write s = t(a), t E U, a E A, and it suffices to prove that, if

Wn x Bn is the element of Cn that contains ( U, a), we have

Obviously, we have

Vol. 32, n° 6-1996.
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since v (Wn x Bn) > x Bn). Using the formulae

u ~- v  ~/~ + ~/v for u, v > 0, and (6.4), we see that

Since Bn = Bn(a), it follows from (2.1) that

Also,

so that (6.6) implies

To control this last term, we recall that since a E Bn, by (2.3) and
construction of W, we have

Also, since

we have

Since it is easily seen that 2-~m°  sup S(U, da), the proof is complete. D
aE~

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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