@article{AIHPB_1995__31_1_249_0,
author = {Newman, C. M. and Stein, D. L.},
title = {Random walk in a strongly inhomogeneous environment and invasion percolation},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {249--261},
year = {1995},
publisher = {Gauthier-Villars},
volume = {31},
number = {1},
mrnumber = {1340039},
zbl = {0817.60097},
language = {en},
url = {https://www.numdam.org/item/AIHPB_1995__31_1_249_0/}
}
TY - JOUR AU - Newman, C. M. AU - Stein, D. L. TI - Random walk in a strongly inhomogeneous environment and invasion percolation JO - Annales de l'I.H.P. Probabilités et statistiques PY - 1995 SP - 249 EP - 261 VL - 31 IS - 1 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPB_1995__31_1_249_0/ LA - en ID - AIHPB_1995__31_1_249_0 ER -
%0 Journal Article %A Newman, C. M. %A Stein, D. L. %T Random walk in a strongly inhomogeneous environment and invasion percolation %J Annales de l'I.H.P. Probabilités et statistiques %D 1995 %P 249-261 %V 31 %N 1 %I Gauthier-Villars %U https://www.numdam.org/item/AIHPB_1995__31_1_249_0/ %G en %F AIHPB_1995__31_1_249_0
Newman, C. M.; Stein, D. L. Random walk in a strongly inhomogeneous environment and invasion percolation. Annales de l'I.H.P. Probabilités et statistiques, Tome 31 (1995) no. 1, pp. 249-261. https://www.numdam.org/item/AIHPB_1995__31_1_249_0/
[1] and , The metastable behavior of infrequently observed, weakly random, one-dimensional diffusion processes, SIAM J. Appl. Math., Vol. 45, 1985, pp. 972-982. | Zbl | MR
[2] , and , Neo-darwinian evolution implies punctuated equilibria, Nature, Vol. 315, 1985, pp. 400-401.
[3] and , Broken ergodicity in glass, in Relaxation in Complex Systems, ed. K. L. Ngai and G. B. Wright, U.S. GPO, Washington, 1985, pp. 253-259.
[4] , , and , Models of hierarchically constrained dynamics for glassy relaxation, Phys. Rev. Lett., Vol. 53, 1984, pp. 958-961.
[5] and , Dynamics on ultrametric spaces, Phys. Rev. Lett., Vol. 55, 1985, pp. 1634-1637. | MR
[6] , On the glass transition and the residual entropy of glasses, Philos. Mag., Vol. B44, 1981, pp. 533-545.
[7] , Broken ergodicity, Adv. Phys., Vol. 31, 1982, pp. 669-735.
[8] and , Droplet dynamics for asymmetric Ising model, J. Stat. Phys., Vol. 70, 1993, pp. 1121-1148. | MR | Zbl
[9] and , Shapes of growing droplets - a model of escape from a metastable phase, J. Stat. Phys., Vol. 75, 1994, pp. 409-506. | Zbl | MR
[10] and , Markov chains with exponentially small transition probabilities: first exit problem from a general domain. I. The reversible case, preprint, 1994. | MR
[11] , Stochastic Processes in Physics and Chemistry, Elsevier, Amsterdam/New York, chap. 11, 1981. | Zbl
[12] , Handbook of Stochastic Methods, Springer-Verlag, New York/Berlin, chap. 9, 1983. | Zbl | MR
[13] and , Random Perturbations of Dynamical Systems, Springer-Verlag, New York/Berlin, chaps. 4 & 6, 1984.
[14] , , and , Metastable behavior of stochastic dynamics: a pathwise approach, J. Stat. Phys., Vol. 35, 1984, pp. 603-634. | Zbl | MR
[ 15] , and , Metastability for a class of dynamical systems subject to small random perturbations, Ann. Prob., Vol. 15, 1987, pp. 1288-1305. | Zbl | MR
[16] , , and , Small random perturbations of finite- and infinite-dimensional dynamical systems: unpredictability of exit times, J. Stat. Phys., Vol. 55, 1989, pp. 477-504. | Zbl | MR
[17] and , Description d'un mécanisme de connexion de liaison destiné à l'étude du drainage avec piégeage en milieu poreux, C.R. Acad. Sci. Paris Sér. B, Vol. 291, 1980, pp. 279-282.
[18] , , and , Capillary displacement and percolation in porous media, J. Fluid Mech., Vol. 119, 1982, pp. 249-267. | Zbl
[19] and , Invasion percolation: a new form of percolation theory, J. Phys. A, Vol. 16, 1983, pp. 3365-3376. | MR
[20] , and , The stochastic geometry of invasion percolation, Comm. Math. Phys., Vol. 101, 1985, pp. 383-407. | MR
[21] and , Spin glass model with dimension-dependent ground state multiplicity, Phys. Rev. Lett., Vol. 72, 1994, pp. 2286-2289.
[22] and , Geometric bounds for eigenvalues of Markov chains, Ann. Applied Prob., Vol. 1, 1991, pp. 36-61. | Zbl | MR






