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Le mouvement brownien sur RY,
en tant que semi-martingale dans Sy

par

Laurent SCHWARTZ

Centre de Mathématiques, Ecole Polytechnique,
91128 Palaiseau Cedex

REsuME. — Le mouvement Brownien sur RN est, considéré comme
a valeurs dans Sy = RN U { oo }, une semi-martingale dans [0, + c0] x Q
pour N > 3, pour les temps montants ou descendants.

ABSTRACT. — Brownian motion on RN, as a process with values in
Sy =RNuU {0}, is a semi-martingale in [0, + o] x Q for N > 3 for
increasing or decreasing times.

§ 1. ENONCE ET DEMONSTRATION DU THEOREME

Soient (Q, O, (¢;).xx., P) un ensemble filtré probabilisé, "vérifiant les
conditions habituelles (sauf peut-€tre le caractére P-complet des &,), et B
une martingale continue sur [0, + oo x Q, de loi brownienne P de
distribution initiale By(P) = p sur RYB, — B, est gaussienne de para-
métre ./t — s, indépendante de 7,0 < s <t < + o). Pour N = 3, on
sait que, quand t — + oo, B, tend p. s. vers oo dans RN, et méme que,

1 .
pour tout o < X B,/t* tend p. s. vers o0, ce que nous écrirons | B, | 7! < Ct 79,
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16 L. SCHWARTZ

C dépendant de a« et @ (*). Si alors on plonge RN dans son compactifié
d’Alexandroff Sy = RN U { oo }, la sphére munie de sa structure différen-
tielle usuelle, on peut prolonger B en B, défini sur R, x Qa valeurs dans Sy,
p. s. continu, en posant B(+ o0) = B(4,,~ = c0. On connait la signifi-
cation de semi-martingale & valeurs dans une variété différentielle (*). Alors :

THEOREME (1.1). — Sur R, x Q, B est une semi-martingale pour
((@)ix ., P), & valeurs dans Sy, pour N > 3.

Remarque. — Q est quelconque, et les tribus &, sont peut-étre bien plus
grandes que les tribus naturelles engendrées par B.

Démonstration. — Nous allons montrer que R, x Q est réunion d’une
suite d’ouverts optionnels dans chacun desquels elle est restriction d'une
semi-martingale (3). C’est vrai dans [0,n] x Q,ne N, ou B = B", brownien
arrété au temps n. Il suffit de le montrer pour ouvert ]1, + o] x Q; il
suffit pour cela quelle soit une semi-martingale dans [1, + 0] x Q, car,
en prolongeant celle-ci par une constante dans [0, 1] x Q, on en fait une
semi-martingale sur R, x Q. On va donc montrer que B, restreinte & -
[1, + oo x Q, est restriction dune semi-martingale sur [1, + 0] x Q
(temps initial 1). Appelons @ I'inversion de Sy, x — ﬁ avec ®(0) = oo,
®(0) = 0; il suffit de montrer que ®(B), sur [1, + o[ x Q, est restriction
d’'une semi-martingale sur [1, + o] x Q. Par Ito, sur [1, + oo x Q:

1

N
1.2) cp(B,)-cp(Bg:Z J 5, ®(B,)dB* + % J A®(B,)ds=M + V,
k=1

ou les B* sont les coordonnées de B dans RY. Cette formule n’est vraie
que dans ([1, + o[ x Q), Q' ={ weQ; Vf, B{w)#0 }, mais B # 0, P p. s.

(") Voir DVORETZY et ERDOS, Some problems on random walk in space. Proceedings of
the Second Berkeley Symposium on Probabilities, 1951, p. 353-367.

(*) Voir L. ScHWARTZ, Semi-martingales sur des variétés, et martingales conformes
sur des variétés analytiques complexes. Lecture Notes in Mathematics, Springer-Verlag,
Berlin-Heidelberg-New York, t. 780, 1980, définition (1.2), page 6. Dans le cas vectoriel,
si les &, ne sont pas P-complétes, on considérera comme semi-martingale une somme
X =V + M, G-adaptée, V et M adaptées pour les tribus P-complétées &, V A'p, VP p.s.
a variation finie cadlag, M P p.s. cadlag, (&, V A p).gr,-martingale locale.

(®) L. ScHwARTz, loc. cit., proposition (2.4), page 10.
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LE MOUVEMENT BROWNIEN SUR RN, EN TANT QUE SEMI-MARTINGALE DANS Sy 17

En calculant les dérivées successives de @, on voit aussitdt que
1.3) | 0x®(x)| < const. | x|~ 2, | AD(x)| < const. | x|~ 3.

Le processus V est a variation finie jusqu’au temps + oo ; en effet sa varia-
tion est

+ + o

| By | 3ds < Cconst.j s73%s,

1

+ 0
(1.4 f |st|<const.f
1

1

1 © 3
o quelconque < 5 donc 30 < % donc on peut le prendre > 1. Donc V est

By

prolongeable en V, processus a variation finie dans [1, + 0] x Q, en
posant V(co)= V(o _). Ensuite M est une martingale locale sur [1, 4+ oo x Q;
si @' est la i-éme composante de ®, i(x) = x'/| x |2,

N
(1.5) M, M']|= H z 0x'(B,)0,D/(B,)ds
k=1

+ o

t
< const.j | By | *ds < const. Cj s~ 4ds .

1 1

Comme plus haut, 4o peut étre pris > 1, donc [M, M],; a p. s. une limite
pour t — + oo, et par suite M aussi, et elle est prolongeable en M, mar-
tingale locale dans [1, + o] x Q, avec M, = M, _, ce qui achéve la
démonstration. [ ]

REMARQUE (1.6). — Le début, pour passer de [0, + co[ & [1, + 0],
est lourd, par souci de dire « tout », mais on se passera dans la suite de
telles précisions !

(1.7) Si Q est Pespace des trajectoires continues C([0, + oo [; RY), Q
I’espace C([0, + o0 ]; Sy), chacun muni de la plus petite famille de tribus
croissante et continue a droite, qui rende le processus canonique 7, T,
W) = w,, T{w) = w,, adapté, bien évidemment il existe une injection
naturelle @ — €, les tribus de Q sont les images réciproques de celles de Q,
et 7 est 'image réciproque de n. Alors I’énoncé (1.1) équivaut a dire que P
provient d’une P sur Q, unique, et qui fait de 7 une semi-martingale.

(1.8) Ainsi,dans Sy, N = 3, B ressemble a un pont brownien sur [0, + co];
C’est une semi-martingale, qui part de a € Sy si u = d(,, au temps 0, et qui
arrive en oo € Sy au temps + oo (voir a ce sujet I'article suivant de M. Yor).

Vol. 21, n° 1-1985.



18 L. SCHWARTZ

§ 2. MEME ENONCE,
AVEC INVERSION DU SENS DU TEMPS

Soit I un intervalle de R, ouvert, semi-ouvert ou fermé, (I x I), le sous-
ensemble {(s,£) eI x I;s <t}del x I,qunefonction > 0 borélienne sur

(I x T4 x RN x RN telle que, VxeRN, V(s, t)e(I x I),, J qis, t; x, ydy=1.
RN

On appelle relation de Chapman-Kolmogorov la relation suivante :

Vx, yeRN, Vr, s, t,r < s <t:
2.1 f q(r, s; x, 2)q(s, t5 z, yydz = q(r, t5 x, y) .
RN

Si cette relation est vérifiée, on dira que g définit une probabilité de tran-
sition ; la répartition conditionnelle a Iinstant ¢ > s, lorsqu’on sait que
I'on part de x a 'instant s, est g(s, t; x, y)dy. Alors ¢ permet de construire
un processus ; il est indexé par les temps de I ; sa loi pour les temps = g€,
P%, correspondant 4 une répartition initiale u sur RY a Pinstant initial o,
est donnée par ses projections marginales;soient o < t; <t, < ... <t,:

2.2) (mo, My, Ay - - - W )PY) =

=H(dxa)41(0» tl 5 Xgs xtl)dxth(tla t2 5 xtp xtz)dxtz ... q(tn— 1> tn; xt,,-l s xt")dxtn .

La probabilit¢ P%, d’aprés un théoréme classique de Kolmogorov, est
portée par I'espace (RN)' de toutes les trajectoires, muni de la plus petite
tribu rendant toutes ses projections 7, mesurables, et m est le processus
canonique, m(w) = w,. Il ne posséde, §’il n’y a pas d’hypothéses supplé-
mentaires sur ¢, aucune autre propri¢té intéressante que la propriété
simple de Markov. Le processus est dit markovien continu si les lois mar-
ginales définissent une probabilité P% sur 'espace des trajectoires continues,
quels que soient o et p, et si le processus ainsi formé est fortement markovien.
Le plus connu de ces processus markoviens continus est le mouvement
brownien, I = R, et, pour s < ¢ :

q(s, 5%, Y) = 1=y — %),
76(&) = gaussienne de paramétre /0 sur R0 > 0)

1 N
=(\/2—0> exp (— | £1%/20).
TT

Annales de I’ Institut Henri Poincaré - Probabilités et Statistiques

(2.3




LE MOUVEMENT BROWNIEN SUR RN, EN TANT QUE SEMI-MARTINGALE DANS Sn 19

A partir d’'une fonction ¢, on peut en former une autre § sur
(=Dx(=D)- xR¥xRY, (=D x(=D)-={(s)e(=Dx (=), t>s },

en posant g(t,s) = g(—t, —s). Il définit cette fois un processus « a temps
descendant » ; §(t, s; x, y)dy est la loi conditionnelle de = lorsqu’on sait
que 7, = x; les lois marginales du processus pour une distribution v a
linstant initial t€ — I, sont données, pour t; <t,... <t,<7t, par

(24) (TC“, ntza L) nt,,n nr)([p:):
v(dx.) q(T, t,; X, xt,.)dxtnq(tm In—15 Xe,s xt,._l)dxtn_l con gltg, ty Xtys xt,)dxtl -

Par changement de signe du temps, on passe du processus & temps montant
au processus a temps descendant, de sorte que, si g définit un processus
markovien continu 4 temps montant, il en est de méme de g a temps descen-
dant ; c’est le cas pour g définie par (2. 3), avec en plus §(t, s)=4(s, t)=p(t —s);
on obtiendra un mouvement brownien a temps descendant, pour lequel
on se fixera une distribution initiale v & linstant t, et P! sera portée par
I’espace des trajectoires continues sur ]— oo, 7].

(2.4.1) On va maintenant définir les ponts browniens. Soit beRY, zel.
Soit g définissant un markovien continu & temps montant. Prenons une nou-
velle probabilité de transition p, sur (I' x I}y x RNx RN, I’=1n[— o0, 7],
définie, pour s <t < 1, par :

(2.4.2) s, t;x, y)=q(s, t; x, y)q(t, T; y, b)/q(s, T; x, b) ;

p est le conditionnement de g par n, = b. Les p forment un nouveau sys-
téme de probabilités de transition, vérifiant Chapman-Kolmogorov;
pour un départ de distribution p au temps o, ¢ < t, on a une probabilité
P%? sur l'espace des trajectoires, définie par ses lois marginales, pour
o< <L <...<t,<71:

(2 . 5) (TC(,, TC“, Tcty ) nt,.)(lpﬁ;g)z
Mdx,)a(o, t1 5 X, X0, JAX1,q(E1, L2 5 X5 X)Xy -
e Q(tn* 1» tn ; -xtnf 12 th)d-xt,.q(tm T 5 xtn’ b)/q(as T 5 Xd, b)

On démontre alors aisément que, si les g définissent un markovien continu,
les p en définissent un aussidans [~ [ — oo, 7], peut étre pasdans In[— oo, 7];
paradoxalement, bien qu’on ait conditionné par m,=b, on ne peut pas
affirmer que, P#? — p. s, 7, ait la limite b lorsque t < t tend vers 7, ni
méme qu’il ait une limite! Le « conditionnement par =, = b » est donc

Vol. 21, n° 1-1985.



20 L. SCHWARTZ

assez platonique. Cependant, dans le cas brownien de (2.3), on montrera
plus loin que P%? est bien définie sur C([o, t]; RY), avec n, = b.

11 existe bien entendu des propriétés analogues relativement a ¢, mais
en conditionnant par , = a € RN, pour I'intervalle de temps (—I)n]o, +o0]
ou (—I)n Jo, + o). Les lois marginales de lﬁ’:;‘; sont :

(2.6) (ntp Tys o v o5 Ty 775:)(“52‘5)
v(dxr) é(’f, In; X, xtn)dxtnzj(tm [ 15 Xty X, - ;)d-xtn- 100
v zj(tla tl 5 xtzs xtl)dxtl é(tla g, xn: a)/Z]'(‘c, g5 X, a) .

Dans les cas ou, comme pour le mouvement brownien, P%? est définie
sur C([o, 7]; RY), on peut dans (2.5), calculer aussi la projection (m,,
Teys + + o5 Ty, T), €0 Tjoutant a la fin un facteur dy,(dx,), et de méme, dans
(2.6), en rajoutant a la fin un facteur J,(dx,).

Ce qu’on appelle plus spécialement le pont brownien, en a au temps o
et en b au temps 7, est le processus canonique 7, 7{®)=w,, sur Q=C([o, 1];
RY), pour la probabilité P%? ou p=4,,, ce qu’on notera P%?. Mais il existe
aussi un pont brownien a temps descendant, relatif & [Ij”t’;‘; Et Cest le méme
en ce sens que Q = C([o, 7]; RY) est le méme et que P%% = P24 3 cause de
la parité de 7y, y4(— &) = 74() :

2.7) (Rgy Ty Ty« o s Wy nr)(ﬂi't’z‘;)z
= O AX Y1 -1, (Xe, — X)X, Ve -t (X =X )dx,,
oo Yoa—n(Xe, _xtz)dxllytl —a(a—xtl)é(a)(dxa)/'yr—cr(a —b)
= 5(a)(dxa)‘))t1 —a(xn _a)dxtl'))tz—tl(xtz —th)dxtz s
o Vit (X — X - AX Ve (X — xt")é(b)(dxr)/% —ob—a)
=(Tgs Tys Ty - - oy Ty T)(PRD).

Regardons maintenant les propriétés de semi-martingales dans le cas
brownien (2.3). Pour la probabilité¢ P# sur C([o, + oo [; RY), le processus
canonique 7, brownien, est une martingale pour ses tribus naturelles. Le
processus 7 est encore une semi-martingale sur C([o, t[; RY) pour P2,

En effet, en projection sur C([o, 7' ]; RN), 7’ < 1, P2 et P%? sont des mesures
équivalentes ; ceci est vrai en général, pas seulement dans le cas gaussien
[Appelons Q' Pensemble C([a, 7' ]; RY). Alors les lois marginales (2.2), (2.5),
montrent que P’*Y%dw’) = Peldolq(@’, z; o'r), b), ce qui montre bien

’ q(o,7;a,b)
équivalence]; alors Girsanov montre bien que 7’ est une (PZ?)-semi-
martingale sur [o, t'] x C([o, 7’]; RY), donc aussi = sur [0, t[ x C([o, 7[; RM).

Ensuite les lois marginales montrent aussitdt que P#2= f

P2’ u(da),
R N

Annales de I'Institut Henri Poincaré - Probabilités et Statistiques



LE MOUVEMENT BROWNIEN SUR RN, EN TANT QUE SEMI-MARTINGALE DANS Sy 21

donc 7 est une (P%?)-semi-martingale sur [o, t[ x C([g, 7[ x RY) par le théo-
réme de convexité de Jacod (*). Mais considérons P%? sur Q=C([a, t[; R")
et les tribus naturelles ; nous allons voir que «, a non seulement une limite
p.s. lorsque ¢t < t tend vers 7, mais que = se prolonge en une semi-martin-
gale 7 sur [0, 1] x Q, de sorte qu’on peut le considérer comme une semi-
martingale sur [o,7] x (Q = C([0,7];RY) et les tribus naturelles, et la
probabilité P%% sur Q = C([a,t]; RY).

On doit, pour le voir, utiliser des propriétés trés particuliéres dues a la
loi gaussienne. On montre (°) que, pour les tribus montantes, et P%? sur

b —
Q = C([o, [; RY), si on pose M, = —

, M est une martingale dont

le crochet, & valeurs dans RN © RN, est donné par

N

(2.8) [M,M]t—[M,M]a=—t— ’ 9=zek®ek,

b
T—1 T—0

k=1
ol (e)x=1.2,...~ st la base de RN. Ito donne

2.9) b—m=(—t).M+M.(t—1),

ennotant (t — t)leprocessust + T — t. AlorsM.(t — t)estun processus V
a variation localement finie dans [0, 7], avec :

2.10) f|dvs|=f|Mslds,

g

t t

T
v, < est [ Mzas = || sz

g

(2.10.1) E&t J

o

t T
< const. J (E&2 M, M1{%)ds < const.J (

a

1/2
) ds < const.

s\T —s

(*) Ce théoréme, vrai pour une intégrale de probabilités, est un peu partout démontré
dans le cas d’une combinaison convexe dénombrable (voir par exemple J. Jacop : Calcul
stochastique et problémes de martingales, Lecture Notes in Mathematics, Springer Verlag,
Berlin-Heidelberg-New York, t. 714, 1979, chap. VII, 2, § e, Théoréme (7.42), page 235),
mais, semble-t-il, ne figure nulle part avec une intégrale ! Cela tient a ce que Jacod a démontré
le théoréme avant le critére de Dellacherie pour les semi-martingales ; depuis que ce cri-
tére est connu, le théoréme de Jacod est devenu trivial, méme pour une intégrale de mesures.

(®) Voir T. JEULIN et M. YOR, Inégalit¢ de Hardy, semi-martingales, et faux-amis.
Séminaire de Probabilités X111, 1977-1978, Lecture Notes in Mathematics, Springer-Verlag,
Berlin-Heidelberg-New York, t. 721, 1979, p. 332-359.
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22 L. SCHWARTZ

quand t — 1, 0ou| |est la norme dans RN o) RN, et M* = Sup | My |.

z oS5’ <5

Donc | |dV,| < + o p.s., et V se prolonge en V, 4 variation finie sur

[6,7] x Q V., =V,_.
Ensuite (z — t).M est une martingale N dans [o, t[ X Q, et pour t < 1:

(2.11) [N,N], = f(r — 5)2d[M, M,

1

T—S

t t
< const. J (r — s)2d< ) = const.J (t —s)? _d—sz < const.
- ) 0 (t — )
quand t — 7.
Donc [N, NJ, est borné quand ¢ < 7 tend vers 1, et par suite N se pro-
longe en une martingale N sur [0, 7] x Q N, = N,_.
Donc 7 se prolonge en une semi-martingale 7 sur [o, ] X Q, donc aussi
sur [o,7] x Q Q = C([o, 7]; RY) muni de ses tribus naturelles. Par le

théoréme de convexité de Jacod, c’est aussi vrai pour Pﬁ;’;z-[
R

Le méme résultat est valable a temps descendant, avec P2 sur C([a, 7];
T, —a

i} P2? u(da).

RY); ce qui remplace M est M, M, =

t—o
Il est donc légitime de chercher un énoncé analogue au théoréme (1.1),
mais a temps descendant :

THEOREME (2.12). — Sur Q = C([0, + oo [; RN), ou C(]0, + 0 ];SN)
pour N = 3, le processus canonique #, pour la plus petite famille de tribus
décroissante et continue a gauche rendant n adapté, est une semi-mar-
tingale pour la probabilit¢é du mouvement brownien montant P* = P4,
de distribution u au temps O.

Démonstration.— Reprenons I'intervalle [0, t],0 < © < + oo, Cest-a-dire

T

. . a .
[o, t]avec 6 = 0. Nous venons de voir que M, M, = , est une martin-

gale sur C(]0, t]; RY), pour la plus petite famille de tribus décroissante et
continue 4 gauche rendant 7 adapté et la probabilité P24. Soit alors
O<s<i<t;<t,<...<t, fune fonction borélienne bornée sur

RN*!: en prenant t = t,, on aura :

f,ifzoMsf(Tfn Tyys Tyys « v vy Tctn) = [Etb,’.’,]OMtf(nu Tyis Tygs v 7751,.) .

Annales de I’Institut Henri Poincaré - Probabilités et Statistiques



LE MOUVEMENT BROWNIEN SUR RN, EN TANT QUE SEMI-MARTINGALE DANS Sy 23

Mais 7,, m,, donc M,, M,, sont intégrables pour P* = P4, et P* est une
intégrale des P4’ = P38, comme le montrent (2.2) et (2.5) :

(2.14) Pe = j b-ev(b — a)db.
RN

Donc on a aussi :
(2~ 14.1) [EGMSf(TE,, Tiys Tppy o v vy 713:,.) = {EaMtf(”u Tis Mgy - v 7'5:") .

Par un théoréme évident de classes monotones, cela montre que, si
Q=C([0, + o[; RY), C([0, + c0]; Sx) pour N = 3, muni de la famille
de tribus, décroissante et continue a gauche, la plus petite qui rende =
adapté, et de la probabilité P* du brownien a temps croissant partant de a
a instant 0, M est une martingale sur ]0, + co[ x Q. On ne peut pas parler de
son crochet, puisqu’il n’y a pas le temps initial + co. Mais séparonsen ]0, p] et

. . 0 0
[p, +o], 0<p< +o0. Sur 0, p] xQ, [M, M],—[M,M]p:;—~, pour
p

[P”J 6 quel que soit g, donc aussi pour leur intégrale P° (formule (2.14)
pour Tt = p). Prenons des intégrales stochastiques a temps descendant a
partir de p (°), m —a = (t).M + M.(t); exactement comme on Ia fait
a temps montant aprés (2.9), on voit que 7 est, pour P une semi-mar-
tingale a temps descendant sur [0, p] x Q, donc aussi sur [0, +oc0[ x Q, N
quelconque. Dans [p, + oo, N > 3, c’est moins simple, parce qu’il
manque le temps initial + o0, Soit p < t < + oo. Nous prendrons, dans
[p, t], des intégrales descendantes, a partir du temps initial t. Alors :

P [4
(2.14.2) 7w, —a=tM,, n,,—n,zj deerf Mds .
4 1

Comme pour la démonstration de (1.1), nous ferons linversion @,
O(x) = x/| x|?, qui raménera Sy\{0} a RN et nous rappelons que
|6, D(x)| < const. |x|72, |9;0;0(x)| < const. |x| 3. Alors, pour 1 <t< +oc:

2.15  Om,) — Dm) -j z@@(ns)dns J AD(7,)(—ds)

(parce que d(n, )y = — Ods, = 0 pour ds < 0; & temps descendant
comme a temps montant, [r, 7] est la méme, au signe prés !). La probabi-
lité est ici toujours P9, et on sait déja que = est, pour les temps descen-

b "a
() Attention : pour a < h. j a temps montant et J a temps descendant ne sont pas
opposés, a cause du crochet. ** b

Vol. 21, n° 1-1985.



24 L. SCHWARTZ

dants, une semi-martingale. La partie a variation finie de ®(n,) — ®(x)
est définie, si les M* sont les coordonnées de M, par :

N

(2.16) W, = r (Z O D(m)ME — % A(I)(ns)>ds

k=1

et la partie martingale est définie par :

N
el
(2.17) L = [ 28k(l)(ns)sdl\7[§.
t
k=1

On a, pour s - + o0, les majorations :
(2.18) |dW,| < const. (|7, | 2| M, | + | m,|73) | ds|
< const. (|| "1™ + |y |”3)ds < const. C(s™* ! + s73%ds

p
donc J | dW;| < const. C, et W se prolonge en W a variation finie dans
+ o

[p, + o] x Q. Ensuite, si les L* sont les coordonnées de L :

N
(2.19) 4L, L) | = lZakq)i(ns)ak(Dj(ns)szd [M*, M*],
k=1

1
< const. | m, |2 | 7, |_232d<~) < const. Cs 74| ds|.
s

de sorte que [L,L] — [L,L], est < const. C, et L se prolonge en L mar-
tingale locale continue sur [p, + 0] X , wa) = L4~ (), ce qui
démontre bien que « est, sur [0, + oo] x Q, pour P“, une semi-martingale
a temps descendant, a valeurs dans Sy. Il en est de méme, par le théoréme

de convexité de Jacod, pour la probabilité P* = J P?u(da).
RN
Remarque. — Nous avons « contrarié¢ » le sens du temps en prenant des
tribus descendantes pour la probabilité P* du brownien a temps montant.
On peut naturellement faire la méme chose, mais c’est plus simple, sur [0, ],
pour le pont brownien. En effet, pour P42, 7 est une semi-martingale a temps

(") M. SHARPE, Local times and singularities of continuous local martingales, Séminaire
de Probabilités X1V, 1978-1979, Lecture Notes in Mathematics, Springer-Verlag, Berlin-
Heidelberg-New York, t. 784, 1980, prop. 39, page 95.
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descendant puisque P52 = P2 ; cest vrai aussi pour P42 = J
”
De méme, pour P}¢, 7 est une semi-martingale a temps montant.

P2 u(da).
N

§ 3. QUELQUES COMPLEMENTS

Avec les méthodes ci-dessus, on peut démontrer bien d’autres résultats,
dont je me contenterai d’énoncer quelques-uns.

PROPOSITION (3.1). — Plagons-nous dans les conditions du § 1. Pour

1
o> > t +— B,/t* (qui tend p. s. vers 0 pour t — + o0), NeN quelconque,
. . — 1
se prolonge en une semi-martingale sur R, x Q. Pour o réel < 5 t — B/t*

(qui tend p. s. vers co pourt — + o0) se prolonge en une semi-martingale
a valeurs dans Sy sur R, x Q, pour N > 3.

PROPOSITION (3.2). — Soient — o0 < 6 < T < + o0, et les tribus crois-

santes naturelles sur C([o, z]; RY); si & est le processus canonique, alors
b—m=n 1 . .
— ﬁ, o< 3 est une semi-martingale pour P%? (pont brownien), -
T —

avec valeur b en t.

1 b—m= . .
Pour o > 3 et N=3t (——t—;a est une semi-martingale pour P2 a
T —

valeurs dans Sy, avec valeur oo en .

Démonstration. — Par le changement de temps u = , on rend la

martingale M brownienne dans [

,+ oo[, et (3.2) se déduit immédia-
tement de (3.1). t-o

( Manuscrit requ le 10 Avril 1984)
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