@article{AIHPB_1977__13_4_321_0,
author = {Lin, Michael},
title = {Ergodic properties of an operator obtained from a continuous representation},
journal = {Annales de l'institut Henri Poincar\'e. Section B. Calcul des probabilit\'es et statistiques},
pages = {321--331},
year = {1977},
publisher = {Gauthier-Villars},
volume = {13},
number = {4},
mrnumber = {499082},
zbl = {0383.60071},
language = {en},
url = {https://www.numdam.org/item/AIHPB_1977__13_4_321_0/}
}
TY - JOUR AU - Lin, Michael TI - Ergodic properties of an operator obtained from a continuous representation JO - Annales de l'institut Henri Poincaré. Section B. Calcul des probabilités et statistiques PY - 1977 SP - 321 EP - 331 VL - 13 IS - 4 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPB_1977__13_4_321_0/ LA - en ID - AIHPB_1977__13_4_321_0 ER -
%0 Journal Article %A Lin, Michael %T Ergodic properties of an operator obtained from a continuous representation %J Annales de l'institut Henri Poincaré. Section B. Calcul des probabilités et statistiques %D 1977 %P 321-331 %V 13 %N 4 %I Gauthier-Villars %U https://www.numdam.org/item/AIHPB_1977__13_4_321_0/ %G en %F AIHPB_1977__13_4_321_0
Lin, Michael. Ergodic properties of an operator obtained from a continuous representation. Annales de l'institut Henri Poincaré. Section B. Calcul des probabilités et statistiques, Tome 13 (1977) no. 4, pp. 321-331. https://www.numdam.org/item/AIHPB_1977__13_4_321_0/
[1] and , Sur l'équation de convolution μ = μ * σ. C. R. Acad. Sci. Paris, t. 250, 1960, p. 799-801. | Zbl | MR
[2] , Lois « zéro on deux » pour les processus de Markov. Applications aux marches aléatoires. Ann. Inst. H. Poincaré B, XII, 1976, p. 111-130. | Zbl | MR | Numdam
[3] and , Linear operators. Part I. Interscience, New York, 1958. | Zbl | MR
[4] , On finite invariant measures for Markov operators. Proc. Amer. Math. Soc., t. 38, 1973, p. 553-557. | Zbl | MR
[5] , Convergence of the iterates of an operator. Israel J. Math., t. 16, 1973, p. 159-161. | Zbl | MR
[6] , Convergence of the iterates of convolutions. To appear. | MR
[7] , Iterates of a convolution on a non-Abelian group. Ann. Inst. H. Poincaré B, XI, 1975, p. 199-202. | Zbl | MR | Numdam
[8] and , On convex power series of a conservative Markov operator. Proc. Amer. Math. Soc., t. 38, 1973, p. 325-330. | Zbl | MR
[9] , Mixing for Markov operators. Z. Wahrscheinlichkeitstheorie, t. 29, 1971, p. 231-242. | Zbl | MR
[10] , On the uniform ergodic theorem II. Proc. Amer. Math. Soc., t. 46, 1974, p. 217-225. | Zbl | MR
[11] , Limit theorems for probability measures on non-compact groups and semi-groups. Z. Wahrscheinlichkeitstheorie, t. 33, 1976, p. 273-284. | Zbl | MR
[12] , A note on the ergodic properties of homeomorphisms. Proc. Amer. Math. Soc., t. 57, 1976, p. 169-172. | Zbl | MR
[13] and , Probability measures on locally compact groups and semi-groups. Springer lecture notes in Mathematics, Berlin-Heidelberg, 1976. | MR





