@article{AIHPA_1998__69_4_441_0,
author = {Nakano, Fumihiko},
title = {Calculation of the {Hall} conductivity by {Abel} limit},
journal = {Annales de l'I.H.P. Physique th\'eorique},
pages = {441--455},
year = {1998},
publisher = {Gauthier-Villars},
volume = {69},
number = {4},
mrnumber = {1659579},
zbl = {0928.47053},
language = {en},
url = {https://www.numdam.org/item/AIHPA_1998__69_4_441_0/}
}
Nakano, Fumihiko. Calculation of the Hall conductivity by Abel limit. Annales de l'I.H.P. Physique théorique, Tome 69 (1998) no. 4, pp. 441-455. https://www.numdam.org/item/AIHPA_1998__69_4_441_0/
[AS] and , Quantization of the Hall conductance for general multiparticle Schrödinger Hamiltonians, Phys. Rev. Lett., Vol. 54, 1985, pp. 259-262. | MR
[ASS] , , and , Charge deficiency, charge transport and comparison of dimensions, Commun. Math. Phys., Vol. 159, 1994, pp. 399-422. | Zbl | MR
[ASY] , and , Adiabatic theorems and applications to the quantum Hall effect, Vol. 110, 1987, pp. 33-49. | Zbl | MR
[B1] , Ordinary quantum Hall effect and non-commutative cohomology, in Proceedings of the Bad Schandau conference on localization, W. WELLER, P. ZIECHE, Eds., Teubner-Verlag, Leipzig, 1987.
[B2] , , , The non-commutative geometry of the quantum Hall effect, J. Math. Phys., Vol. 35 (10), 1994, pp. 5373-5451. | Zbl | MR
[B3] , Gap labeling theorems for Schrödinger operators, in from number theory to physics, M. WALDSCHMIDT, P. MOUSSA, J. LUCK, C. ITZYKSON Eds., Springer-Verlag, Berlin, 1991. | Zbl | MR
[JN] and , Mapping properties of functions of Schrödinger operators between Sobolev spaces and Besov spaces, Advanced Studies in Pure Math., Vol. 23, 1994, pp. 187-210. | Zbl
[L] , Quantized hall conductivity in two dimensions, Phys. Rev., Vol. B23, 1981, p. 5632.
[NB] and , Low energy bands do not contribute to quantum Hall effect, Commun. Math. Phys., Vol. 31, 1990, pp. 283-305. | Zbl | MR
[S] , Schrödinger semigroups, Bull. Amer. Mech. Sci., Vol. 7, 1982, pp. 447-526. | Zbl | MR
[TKNN] , , and , Quantum Hall conductance in a two dimensional periodic potential, Phys. Rev. Lett, Vol. 49, 1982, p.40.
[Y] , The Wk,p-continuity of wave operators for Schrödinger operators III, even dimensional cases m ≥ 4, J. Math. Sci. Univ. of Tokyo, Vol. 2, 1995, pp. 311-346. | Zbl | MR





