@article{AIHPA_1998__69_4_359_0,
author = {Giannoni, F. and Masiello, A. and Piccione, P.},
title = {A {Morse} theory for light rays on stably causal lorentzian manifolds},
journal = {Annales de l'I.H.P. Physique th\'eorique},
pages = {359--412},
year = {1998},
publisher = {Gauthier-Villars},
volume = {69},
number = {4},
mrnumber = {1659591},
zbl = {0920.58019},
language = {en},
url = {https://www.numdam.org/item/AIHPA_1998__69_4_359_0/}
}
TY - JOUR AU - Giannoni, F. AU - Masiello, A. AU - Piccione, P. TI - A Morse theory for light rays on stably causal lorentzian manifolds JO - Annales de l'I.H.P. Physique théorique PY - 1998 SP - 359 EP - 412 VL - 69 IS - 4 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPA_1998__69_4_359_0/ LA - en ID - AIHPA_1998__69_4_359_0 ER -
%0 Journal Article %A Giannoni, F. %A Masiello, A. %A Piccione, P. %T A Morse theory for light rays on stably causal lorentzian manifolds %J Annales de l'I.H.P. Physique théorique %D 1998 %P 359-412 %V 69 %N 4 %I Gauthier-Villars %U https://www.numdam.org/item/AIHPA_1998__69_4_359_0/ %G en %F AIHPA_1998__69_4_359_0
Giannoni, F.; Masiello, A.; Piccione, P. A Morse theory for light rays on stably causal lorentzian manifolds. Annales de l'I.H.P. Physique théorique, Tome 69 (1998) no. 4, pp. 359-412. https://www.numdam.org/item/AIHPA_1998__69_4_359_0/
[1] , Sobolev spaces. Ac. Press. New York, 1975. | Zbl | MR
[2] and , A Fermat principle on Lorentzian manifolds and applications, Appl. Math. Lett., Vol. 9, 1996, pp. 91-96. | Zbl | MR
[3] and and , Global Lorentzian Geometry. Marcel Dekker. New York, 1996. | Zbl | MR
[4] , A new approach to Morse-Conley theory and some applications, Ann. Mat. Pura ed Appl., Vol. 158, 1991, pp. 231-305. | Zbl | MR
[5] , Lectures on Morse Theory old and new, Bull. Am. Math. Soc., Vol. 7, 1982, pp. 331-358. | Zbl | MR
[6] , and , Null geodesics on Lorentz manifolds, in Nonlinear variational problems and partial differential equations, Isola d'Elba 1990 (A. MARINO and M.K.V. MURTHY eds.), pp. 81-84. Pitman research notes in Mathematics, Vol. 320. Longman, London 1995. | Zbl | MR
[7] , Nonlinear Functional Analysis. Springer-Verlag, Berlin 1985. | Zbl | MR
[8] , and , A Fermat principle for stationary space-times with applications to light rays, J. Geom. Phys., Vol. 15, 1995, pp. 159-188. | Zbl | MR
[9] , Morse Theory for light rays without nondegeneration assumptions, Nonlinear World, Vol. 4, 1997, pp. 173-206. | Zbl | MR
[10] and , Morse Relations for geodesics on stationary Lorentzian manifolds with boundary, Top. Meth. in Nonlinear Anal., Vol. 6, 1995, pp. 1-30. | Zbl | MR
[11] and , On a Fermat principle in General Relativity. A Ljustemik-Schnirelmann theory for light rays, Ann. Mat. Pura Appl., in press. | Zbl
[12] and , On a Fermat principle in General Relativity. A Morse Theory for light rays, Gen. Rel. Grav., Vol. 28, 1996, pp. 855-897. | Zbl | MR
[13] , and , A variational theory for light rays on causally stable Lorentzian manifolds: Regularity and multiplicity results, Comm. Math. Phys., Vol. 187, 1997, pp. 375-415. | Zbl | MR
[14] , and , A variational theory for light rays on causally stable Lorentzian manifolds II: Existence and multiplicity results, preprint n. 16/96 Dip. Mat. Univ. Bari, 1996.
[15] and , The Large Scale Structure of Space-Time. Cambridge University Press, London/New York, 1973. | Zbl | MR
[16] , General Topology. Van Nostrand, Princeton 1955. | Zbl | MR
[17] , Riemannian Geometry. W. de Gruyter, Berlin/New York, 1982. | Zbl | MR
[18] , Fermat principles for arbitrary space-times, Astrophys. J., Vol. 351, 1990, pp. 114-120.
[19] , Fondamenti di Meccanica Relativistica. Zanichelli, Bologna 1928. | JFM
[20] , Variational Methods in Lorentzian Geometry. Pitman Research Notes in Mathematics, 309. Longman, London 1994. | Zbl | MR
[21 ] and , Shortening null geodesics in stationary Lorentzian manifolds. Applications to closed light rays, Diff. Geom. Appl., Vol. 8, 1998, pp. 47-70. | Zbl | MR
[22] and , Critical Point Theory and Hamiltonian Systems. Springer-Verlag, Berlin, 1989. | Zbl | MR
[23] , A gravitational lens produces an odd number of images, J. Math. Phys., Vol. 26, 1985, pp. 1592-1596. | Zbl | MR
[24] , Morse Theory. Princeton University Press, Princeton, 1963. | Zbl | MR
[25] , The Calculus of Variations in the Large. Coll. Lect. Am. Math. Soc., Vol. 18, 1934. | Zbl | JFM
[26] , Semi-Riemannian Geometry with applications to Relativity. Acad. Press, New-York-London, 1983. | Zbl
[27] , Morse Theory on Hilbert manifolds, Topology, Vol. 2, 1963, pp. 299-340. | Zbl | MR
[28] , On Fermat's principle in General Relativity: I. The general case, Class. Quantum Grav., Vol. 7, 1990, pp. 1319-1331. | Zbl | MR
[29] , Infinite dimensional Morse Theory and Fermat's principle in general relativity. I, J. Math. Phys., Vol. 36, 1995, pp. 6915-6928. | Zbl | MR
[30] , Morse Theory and gravitational microlensing, J. Math. Phys., 1992, Vol. 33, pp. 1915-1931. | MR
[3 1 ] , Multiplane gravitational lensing. I. Morse Theory and image counting, J. Math. Phys., Vol. 36, 1995, pp. 4263-4275. | Zbl | MR
[32] , Multiplane gravitational lensing. II. Global Geometry of caustics, J. Math. Phys., Vol. 36, 1995, pp. 4276-4295. | Zbl | MR
[33] , and , Gravitational lensing. Springer, Berlin, 1992.
[34] , Homologie singuliere des espaces fibres, Ann. Math., Vol. 54, 1951, pp. 425-505. | Zbl | MR
[35] , Algebraic Topology. Mc Graw Hill. New York, 1966. | Zbl | MR
[36] , A Morse Theory for geodesics on a Lorentz manifold, Topology, Vol. 14, 1975, pp. 69-90. | Zbl | MR
[37] , Zur Gravitationstheorie, Annln. Phys., Vol. 54, 1917, pp. 117-145. | JFM






