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ABSTRACT. — While in classical monatomic ideal gases the dynamic
pressure—i.e. the non-equilibrium contribution to the pressure-is equal to
zero, this is not true in relativistic thermodynamics. Indeed, thermodynamics
and the kinetic theory of relativistic gases indicate that there is a non-
vanishing bulk viscosity (e.g. see [1], [2], [3]). However the bulk viscosity
is small, of O(Z%) in a non-degenerate gas. We confirm this and proceed
to show that there is also an O(Ci,) contribution to the dynamic pressure
due to a non-homogeneous temperature field or, equivalently, to heating.
In the non-relativistic limit that new contribution is much bigger than the
one due to bulk viscosity.
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RESUME. — Alors que dans un gaz monoatomique la pression dynamique,
c’est-a-dire la partie de la pression due au non équilibre, est nulle, elle ne
Iest plus en thermodynamique relativiste. Aussi bien la thermodynamique
que la théorie cinétique des gaz relativistes indiquent qu’il existe une
viscosité de volume non nulle (voir par exemple [1], [2], [3]). Cependant
cette viscosité est petite, de 1’ordre de c%, dans un gaz non dégénéré.
Nous en donnons la confirmation et nous montrons qu’il se trouve aussi
une contribution d’ordre 6—12 a la pression dynamique, contribution due
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112 G. M. KREMER AND I. MULLER

a un champ de température non homogene ou, ce qui est équivalent,
au chauffage. A la limite non relativiste cette nouvelle contribution est
beaucoup plus importante que celle due a la viscosité de volume.

1. PREVIEW AND DISCUSSION

It has been said,—e.g. see [2], [4]-that the dynamic pressure and the
associated bulk viscosity play an important role in the thermodynamics of
the early universe, even though the bulk viscosity is relativistically small, of
order . Indeed, the kinetic theory of gases and extended thermodynamics

C

provide the result—for mc®> >> kT-
5 2
r= O (AL) pa , (1.1)
m A

- BT 6 c?

as first approximations either of the Chapman-Enskog procedure or of the
Maxwell iteration. U 44 is the divergence of the velocity field.

We show in this paper that the second approximation provides the result

15 kTN\? . 5 1 (kT \’dU%,
™ —B—;a"”(m> U= 3wy (m> ar

21 (kT 1 kTN 4
ey G N LA PR 2
3 BT <m62)<1 2mc2>q“4 (12)

g, is the divergence of the heat flux.

Thus the second line—although part of the second approximation-is the
leading term of relativistic order; it is O(-5), while the other terms are
O(%). BT depends on the atomic interaction; it has been calculated for
some interaction potentials (e.g. see [2]). In any case it does not change
the relativistic order.

We conclude from (1.2) that the dynamic pressure 7 is due to expansion
U+, and heating ¢, in O(Z%) and O(%) respectively. Thus the heating
provides the leading contribution to 7. The strategists of the big bang might
wish to know this.
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2. A REMINDER OF RELATIVISTIC
EXTENDED THERMODYNAMICS

The principal objective of relativistic extended thermodynamics is the
determination of the fields (!)

{ particle flux vector A*,

energy-momentum tensor A48, (A48 = ABA)’ (2.1)

The necessary field equations are based upon the conservation laws of
particle number and energy-momentum, Vviz.

Aty =0, (2.2);
A*B L =0, (2.2),

and on the flux balance
AABC =12 (I3 =0,A% = 2A%). (2.2)3

In order to close the system we need constitutive equations which in
extended thermodynamics have the forms

AABC — AABC(AM,AAIN),

IAB — IAAB(A]W7AMN), (2.3)

where A and I are constitutive functions depending on the nature of the gas.

If the constitutive functions are known, the set (2.2) represents a set of
14 field equations for the 14 fields A, A*B. Every solution of this set
is a thermodynamic process.

The constitutive functions A and I are restricted by:

¢ the entropy principle,

e the principle of relativity, and

o the principle of causality and convexity.

For a systematic exploitation of these principles we refer the reader to
[5], or [3], Chapter 4. Here we only cite the results of those memoirs,
which both refer to a linear theory; non-linear combinations of quantities
that vanish in equilibrium are ignored.

i') The indices A, B.C,... denote flat space-time indices and the metric tensor g*% has
signature (1. —1.—1.-1).

Vol. 67, n® 2-1997.



114 G. M. KREMER AND I. MULLER

In order to specify linearity we give up the elegant synthetic notation
used in (2.1) through (2.3) and write A* and A48 as

At = n(a T)mU*,

A*B = §4B)  (p(a, T)4m)h B+ (anB+UB 4)+ (a T)

UAUB. (24
U+ is the 4-velocity and h*8 is deﬁned by SZUAU® — gAB . This is a
common decomposition in relativistic thermodynamics with

n — particle density,
t{(AB) _ stress deviator,
p — equilibrium pressure,
7w — dynamic pressure,

— heat flux,
e — energy density.

T is the absolute temperature and « is the chemical potential to within a
factor —# (?). The functions n(a,T), p(a,T) and e(a,T) represent the
thermal and caloric equations of state of a gas, of which only p(«,T) is
independent, because of the thermodynamic relations

dp e (0 (p
nmT = —(a)T, and ﬁ = (ﬁ(?))a (25)
The state function p(«,T') for relativistic gases is given by the equation
(e.g. see [3], p. 87)

2
p =e~ * %4rym c(kT)2K2( T )

me2>> kT 3 k 3 m
= ym kT 2r—T ) e”*¢
m

15 kT
14 —— . (26
g e
m is the rest mass of an atom, k£ the Boltzmann constant and y is related
to Planck constant.

The equations (2.4) imply a change of variables
from A% A% to o, T, U4, 4B 1 ¢t

Both sets contains 14 independent variables. The latter set is introduced
because the last three of its entries, viz. t{1B), 7, and ¢* vanish in
equilibrium; thus non-equilibrium terms are easy to recognize.

(?) a was called fugacity in [3] and [5].
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In terms of the new variables the flux tensor A4BC and the flux production
I*B are given by the linear relations

44BC _(CO_l_C'r )UAUBUC
_(nm CO Cvr )(gABUC +gBCUA +gCAUB)
+C3(gABqC +gBCqA+g )
6
- 5 Ca(UATUPC + UPUCq* + UCUA¢P)
+ C5(tABIUC 4 ({BOUA 4 ({CA B, (2.7)

I*B = Bragh® — %B;wUAUB + B3t4B) ci21§4(qAUB +qPU4).

(2.8)
The coefficients C' in (2.7) are fully determined in terms of p(a,T) by
the equations

o_ 114
17 92T
-p  p-p I
det [p—p" p' —p” 1“’15— I
31 L, I4y-T 5T
sz——z— -1t 32 J (2.9)
T -p p-—p I
det |[p—p p—p" Tj-T,
—p —p’ %Fl
1
det
o 11 e[Fl F2] 11T
3= 2T s - T >~ T2r,’
P Fl—r'l

where T'1(, T), T'a(a, T) are given in terms of p(a, T) by (®)

A : 1
Flsz’(—ZcQ/%dT), Ty = Ts[Zc /T3< 202 /:—ﬁdT>dT].
(2.10)

The simbols ® and ’ ‘represent derivatives with respect to « and InT
respectively.

(%) Constants of integration have been set equal to zero, since nobody this far has found them
to have physical significance.
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116 G. M. KREMER AND 1. MULLER

The coefficients B in (2.8) are the only unknown coefficients of
relativistic extended thermodynamics. They will presently be related to
the transport coefficients of ordinary thermodynamics, i.e. shear viscosity,
bulk viscosity and thermal conductivity.

This is the full picture as far as extended thermodynamics goes: Given
the transport coefficients we have 14 explicit field equations from which
the 14 fields

a. T.U, t4B) gt

may be determined as solutions of initial and boundary value problems.

However, this is not the way in which thermodynamicists are used to
think. Thermodynamicists like to think of stress, heat flux and dynamic
pressure as constitutive quantities for which they write “phenomenological
equations”, typically the equations of Fourier and Navier-Stokes for the
heat flux and the stress respectively. Such phenomenological relations are
contained in the equations of extended thermodynamics in an approximate
way. We proceed to describe that.

3. THE PHENOMENOLOGICAL RELATIONS OF
ORDINARY RELATIVISTIC THERMODYNAMICS

The transition from extended to ordinary relativistic thermodynamics
proceeds by an iteration scheme that is akin to the Maxwell iteration of the
kinetic theory of gases. We calculate the first iterate 722" from the set of
equtions (2.2) by inserting equilibrium values on their left hand sides: (*)

At =0, APl g =0,  AYBC|, =B (3.1)

Thus follows 43 7 and ¢ (cf. (2.8)). The second iterate 5"
results from insertion of the first iterates on the left hand sides of (2.2). Thus

Y T LI

This scheme might be repeated, but we break it off here. Infact we are
following the scheme to the second order only for the dynamic pressure
which is the focal point of this paper.

(*) A*! does not need the index E—for equilibrium—, since A = n(a. T)mU - consists only
of variables. Similary in (3.2) the index (1) need not appear on A,
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With 4+, A1B, A4BC apd I4P given by (2.4), (2.7) and (2.8) the
equations (3.1) read

.da o AdlnT
0= = (' —P)—— — U
. da ,  ndInT irrA
0=("—p) -+ " = p)——+pU,
. " dU
0=phijas +phiy(InT) .4 — 52, (3.3)
_ o I —3lyda T -4, 4+30dlnT T4 -1,
— B" = B — A
3Bi oT  dr 2T ar T Tar U
1 o T4 I'N-Ty, 4 1T =T dUyp,
—2334(1_\1 = _2_ThMa,A T har(InT) a4 — 2 9T ar
(1) F
Bstyny = _Tl‘hfch%U(B@)'
The first three of these equations are used to eliminate ‘;—‘j = Uha 4,

dnl— U4(InT) .4 and hjyro 4 from the last three equations. Thus we
obtain

5 p-p I
det [p—p" p'—p" T1-Ti
(1) 1 1 —]5 —p’ Fl A
- 2TB—” D p—p'3 [U’A]"
! dtl:-_ ’ p/_p//:I
p I
det
w1 [p’ I'n — Fll} A 1dU,
q-” = _2T B4 p hM (ln T)’A — 0_2? s (34)
(1) 11
touny = ~T§§P1 (bS5 U s.0)]-

These equations are the relativistic analogues to the phenomenological
equations of Fourier and Navier-Stokes. In the jargon of ordinary irreversible
thermodynamics we may call the quantities

1dU
mav-tary)  and [U‘fA],[hﬂ((lnT),A—C—zd—:ﬂ,[hﬁhﬁU(B_C)].

(3.5)

thermodynamic fluxes and forces respectively. The factors of proportionality
between these forces and fluxes are called transport coefficients. There are

Vol. 67. n° 2-1997.
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three of them. viz. bulk viscosity 7, thermal conduct1v1ty < and shear
viscosity u. We have

_ 11 —p —p sl ] 151 nkT?
"= ST BF 5 p—7 T TBi6c m?
det|. ©., 5 7,
-9 P -p
p f‘1
1 Qdet[' Fl—r’l] 1 5nk2T? (36
2T B, p T B2 m ‘
11 1
— T = ——nkT
H="9rB, By

where the second expressions on the right hand sides result from the
equation of state (2.6) in the limit of the non-relativistic gas, i.e. for
me? >> kT.

Thus we confirm that the bulk viscosity is of O(Z). There is no reason
to assume that the B’s in (2.8) and (3.4), (3.6) are anything else but O(1)
and,— indeed— the kinetic theory of gases confirms that, e.g. see [2]. The
equations (3.4), (3.6) can also be derived in the kinetic theory by either
the Chapman-Enskog approximation or by the Grad approximation with
subsequent application of the Maxwell iteration.

4. SECOND ITERATE FOR THE DYNAMIC PRESSURE

In order to calculate the second iterate of m we need only (3.2); and the
time-like components of (3.2); 3 , viz. '

0=A%,,
0= A“B Us,, (4.1)
—3B7*n” = AABCY UL Up.

(1)

We focus the attention on linear terms and drop all products of derivatives
of a, T and U*. Thus (4.1) reads

0=A%,.
()—(448“)(] ) 5 | Us.. (4.2)
_3Br¢ 2, (2) (A4BC(1)U4UB)C — A"BC] (U4cUB+UB cUa).
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or else, by (2.4), (2.7)
do ., .dlnT . .
= —p) T + U,
o + (9" - p) 5 tPUC
_CY d_a ) dlnT ITTA
ic =(p p)dT+(p p) o TP U

C2T dﬂ' 10T (1)
- T ——— + ——C534%
3 Ol g T3 G
da dlnT 5

=D+ (I - T)— = + 3%

0=p

1
x (2
-2I'Binm  —

Hence follows by elimination of %% and

p
det [p—p' p' —p" TH\ -1
@» 11 —p -7 31

= [U,c

oT BT — —
w7, 50
p—p p—D
.. -I_ . . _.
det[p p p] det[p Fl]

~ I, I'-Ty] 5
3

D p—p p I
det [p’—ﬁ p”—p'] det [P' Iy —1“'1]
d

c? ) - 1 1
det [p, L ]BhAB ((mT),A -5

X——
4T?B7 B, p I I
-p p-p I
det p - 15' p' — p” 1'\/1 — Pl
1 1 R, nn-n 2T, du4,
T (B 5 -7 i
R

119

(4.3)

(4.4)

The first line reproduces the first iterate while the other lines represent
the contributions from the second iteration. We see that the new terms
are proportional to second derivatives of T and U+ and their coefficients

contain squares of the B’s.

In the kinetic theory the B’s are proportional to the collision frequency of
the atoms and therefore the Maxwell iteration furnishes a formal expansion
in terms of powers of the flight time. This fact makes the new terms

“small” compared to the first one.

Vol. 67, n°® 2-1997.



120 G. M. KREMER AND I. MULLER

However, the first term is of O(c%), cf. (3.6); and the new terms— the
second iterates— are only of O(c%), or at least this is true for the terms with
the gradient of temperature. We proceed to show this.

The relativistic order, in terms of power of cl of the various terms in
(4.4) may be determined by calculating the values of the determinants with
the state equation (2.6) for a relativistic gas. So as to avoid complexity we
show only the result for the non-relativistic gas mc? >> kT. It reads

@ 1 5nk3T3 1, 1 5nk3T? 1 dU%,
T OB mE AU (BrEz mE & dr
373
L LS K
mce

X ((ln T) 14— %%)’B. (4.5)

Therefore the leading term in the power series of ci, is given by- in the

rest frame—

2 1 1 5nk37T% 1 1 2/ kT W
= T (;1—0-2>qcc s (4.6)

BT B;3 m? ¢ - Br3
it is proportional to the Laplacian of temperature or to the heating q?c(f). And

while this dynamic pressure is still a relativistic effect it is not as small as it
is considered to be in the literature. Indeed, it is O(-%) rather than O(%)!
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L e+ O 1) (5.1)
C-i
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At the same time Kremer [7] showed that the first Maxwell iterate of
the non-equilibrium fourth moment vanishes so that the second iterate
dominates the fourth moment.

This explains why the leading relativistic order O(Z%) never shows up
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appreciated at the time and it is only now-10 years later— that the synthesis
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