@article{AIHPA_1997__67_1_1_0,
author = {Lewis, Roger T. and Siedentop, Heinz and Vugalter, Simeon},
title = {The essential spectrum of relativistic multi-particle operators},
journal = {Annales de l'I.H.P. Physique th\'eorique},
pages = {1--28},
year = {1997},
publisher = {Gauthier-Villars},
volume = {67},
number = {1},
mrnumber = {1463002},
zbl = {0886.35126},
language = {en},
url = {https://www.numdam.org/item/AIHPA_1997__67_1_1_0/}
}
TY - JOUR AU - Lewis, Roger T. AU - Siedentop, Heinz AU - Vugalter, Simeon TI - The essential spectrum of relativistic multi-particle operators JO - Annales de l'I.H.P. Physique théorique PY - 1997 SP - 1 EP - 28 VL - 67 IS - 1 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPA_1997__67_1_1_0/ LA - en ID - AIHPA_1997__67_1_1_0 ER -
%0 Journal Article %A Lewis, Roger T. %A Siedentop, Heinz %A Vugalter, Simeon %T The essential spectrum of relativistic multi-particle operators %J Annales de l'I.H.P. Physique théorique %D 1997 %P 1-28 %V 67 %N 1 %I Gauthier-Villars %U https://www.numdam.org/item/AIHPA_1997__67_1_1_0/ %G en %F AIHPA_1997__67_1_1_0
Lewis, Roger T.; Siedentop, Heinz; Vugalter, Simeon. The essential spectrum of relativistic multi-particle operators. Annales de l'I.H.P. Physique théorique, Tome 67 (1997) no. 1, pp. 1-28. https://www.numdam.org/item/AIHPA_1997__67_1_1_0/
[1] , Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations: Bounds on Eigenfunctions of N-body Schrödinger Operators. Mathematical Notes 29. Princeton University Press, Princeton, 1 edition, 1982. | Zbl | MR
[2] , Schrödinger operators with symmetries. Rep. Math. Phys., Vol. 5, 1974, pp. 219-280. | Zbl | MR
[3] , Schrödinger operators with symmetries. II. Rep. Math. Phys., Vol. 5, 1974, pp. 393-413. | Zbl | MR
[4] , , Werner Kirsch, and Barry Simon. Schrödinger Operators with Application to Quantum Mechanics and Global Geometry. Text and Monographs in Physics. Springer-Verlag, Berlin, 1 edition, 1987. | Zbl | MR
[5] , and , The Agmon spectral function for molecular hamiltonians with symmetry restrictions. Proc. Royal Soc. Lond. A, Vol. 440, 1993, pp. 621-638. | Zbl | MR
[6] , On the spectra of Schrödinger multiparticle Hamiltonians. Helv. Phys. Acta, Vol. 39, 1966, pp. 451-462. | Zbl | MR
[7] and , Spectral Properties of Hamiltonian Operators, Vol. 313 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1 edition, 1973. | Zbl | MR
[8] , , and , Stability of Relativistic Matter via Thomas-Fermi Theory. Helv. Phys. Acta, In press. | Zbl | MR
[9] and , The stability and instability of relativistic matter. Commun. Math. Phys., Vol. 118, 1988, pp. 177-213. | Zbl | MR
[10] , Bessel functions of integer order. In Milton Abramowitz and Irene A. Stegun, editors, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, chapter 9, pp. 355-433. Dover Publications, New York, 5 edition, 1968. | MR
[11] , Bounds for the discrete spectrum of a semi-bounded Schrödinger operator. Math. Scand., Vol. 8, pp. 143-153, 1960. | Zbl | MR
[12] and , Methods of Modern Mathematical Physics, volume 4: Analysis of Operators. Academic Press, New York, 1 edition, 1978. | Zbl
[13] , Quantum Mechanics for Hamiltonians Defined as Quadratic Forms. Princeton University Press, Princeton, New Jersey, 1 edition, 1971. | Zbl | MR
[ 14] , Trace Ideals and Their Applications. Number 35 in London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1979. | Zbl | MR
[15] , Lehrbuch der Mathematischen Physik 3: Quantenmechanik von Atomen und Molekülen. Springer-Verlag, Wien, New York, 1 edition, 1979. | Zbl | MR
[16] , Theory of finite systems of particles I. the Green function. Mat. Fys. Dan. Vid. Selsk., Vol. 2(8), 1964, pp. 1-60. | Zbl | MR
[17] and , On the finiteness of discrete spectrum in the n-particle problem. Rep. Math. Phys., Vol. 19(1), February 1984, pp. 39-90. | Zbl | MR
[18] , A study of the spectrum of the Schrödinger operator for a system of several particles. Trudy Moskov. Mat. Obsc., Vol. 9, 1960, pp. 81-120. | MR
[19] , Spectrum of differential operators of quantum-mechanical many-particle systems in spaces of functions of a given symmetry. Mathematics of the USSR-Izvestija, Vol. 3(3), 1969, pp. 559-616. | Zbl






