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Radiation conditions and resolvent estimates

for relativistic Schrödinger operators

by
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ABSTRACT. - We establish the limiting absorption principle for relativistic
Schrôdinger operators with short-range potentials. We study the asymptotic
behavior of the extended resolvents as the energy goes to oo. In order to

distinguish the extended resolvents, we introduce radiation conditions.

Key words: Relativistic Schrôdinger operators, resolvents estimates, radiation conditions.

RÉSUMÉ. - Nous prouvons un principe d’absorption limite pour des

opérateurs de Schrôdinger relativiste avec des potentiels à courte portée.
Nous étudions le comportement asymptotique des valeurs aux bords de la
résolvante lorsque l’énergie tend vers oo. Nous introduisons des conditions
du rayonnement pour distinguer des valeurs aux bords de la résolvante.

1. INTRODUCTION

The operator

,---/ 
-- 

~ - , - , . , , ,

which we call a relativistic Schrödinger operator, occurs naturally when one
tries to make relativistic corrections to the mathematical theory based on
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278 T. UMEDA

the Schrôdinger operator -0394+V (x). There has been a substantial amount
of literature for relativistic Schrôdinger operators: spectral properties have
been investigated by Daubechies [5], Derezinski [6], Gérard [7], Herbst [9]
and Weder [25], [26]; decays of eigenfunctions have been discussed by
Carmona, Masters and Simon [4], Helffer and Parisse [8] and Nardini [16];
the stability of relativistic matters has been studied extensively by many
authors (see Lieb [13] and references therein).
The purpose of the present paper is to investigate various properties

of the resolvent of the relativistic Schrôdinger operator H with a short-

range potential V (x), in connection with the limiting absorption principle.
Establishing the limiting absorption principle for the operator H, we
discuss the asymptotic behavior of the extended resolvents R* (A) of

H as A - oo. For a function f in some weighted L2-space, we show that
both u+ := R+ (A) f and ~c - . := R- (A) f satisfy the same equation

in distribution sense. In order to distinguish between these two solutions,
we introduce an outgoing and an incoming radiation conditions for the

operator ( 1.1 ).
There are some facts which motivate us to investigate these properties of

the resolvent of the relativistic Schrôdinger operator. We should recall that
the limiting absorption principle is a basic tool in the study of scattering
theory for the Schrôdinger operator. In fact, the extended resolvents of
the Schrôdinger operator play crucial roles in time-independent scattering
theory (cf Agmon [ 1 ], Kuroda [12]) as well as in the inverse scattering
problem (cf. Saitô [22], [23]).
We now introduce the notation which will be used in this paper. For

x E 1 denotes the Euclidean norm of x and

For s E R and a positive integer m, we define the weighted Hilbert spaces
Ls and Hs by

and

When s = 0, we write L2 = LÕ and H’n = The inner products and
norms in L2 and are given by
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and

respectively. By S (Rn) we mean the set of all rapidly decreasing functions
on Rn . For a pair of Hilbert spaces X and Y, B (X, Y ) denotes the
Banach space of all bounded linear operators from X to Y, equipped with
the operator norm

where [] and ~~Y are the norms in X and Y. We set B (X) =
B (X, X). For T E B (L;, Lt), its operator norm will be denoted by

The plan of the paper is as follows. In Section 2 we establish the

limiting absorption principle for the free relativistic Schrôdinger operator
-A + 1. In Section 3 we study the asymptotic behavior of the

extended resolvents of the operator Ho. We discuss the radiation conditions
for the operator Ho in Section 4. In Section 5 we extend the results obtained
in Sections 2-4 to the relativistic Schrôdinger operator H.

2. THE LIMITING ABSORPTION PRINCIPLE FOR Ho

In this section we show the existence of the extended resolvents of the

free relativistic Schrôdinger operator Ho. We start with the precise definition
of the operator Ho . Let Ho denote the selfadjoint operator in Lz given by

It is known that Ho restricted on Co (Rn) is essentially selfadjoint, and that

(cf. [ 15 ] , [24, Theorem 1 ] ), where 0" ( Ho ) and ( Ho ) are the spectrum and
the absolutely continuous spectrum of Ho respectively. Here we introduce
some more notation. The resolvent of Ho will be denoted by Ro ( z ) , i. e.

where p (Ho) is the resolvent set of Ho. The upper and lower half-planes
will be denoted by C+ and C- respectively, i.e.

Vol. 63, n° 3-1995.
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The main result in this section is

THEOREM 2.1. - Let Ho be as in (2.1 ), and let s &#x3E; 1 /2 . Then
(i) For any 03BB &#x3E; 1 _ thprp thp limits

(ii) The operator-valued functions Rô (z) defined by

are B (L;, H1-s)-valued continuous functions.
Remark. - In [2 Theorem 4.3 and Remark 4.5, b)], Arsu derived a result

in a general setting which is similar to conclusion (i) of Theorem 2.1 and
conclusion (i) of Theorem 5.5 in the present paper. It should be noted that
the operator topology adopted in [2] is weaker than ours.

Before giving the proof of Theorem 2.1, we need some prerequisites. We
first need to show a boundedness result on pseudodifferential operators in
weighted L2 Sobolev spaces.

DEFINITION. - A C°° function p (x, Ç-) on Rn x Rn is said to be in the
class (~c E R) if for any pair a and {3 of multi-indecies there exists a
constant &#x3E; 0 such that

The class S 0,0 is a Fréchet space equipped with the seminorms

LEMMA 2.2. - Let p (x, ç) be in for some integer 0 and let
s &#x3E; 0. Then there exist a nonnegative constant C = and a positive
integer .~ == such that

Proof - We first prove the lemma in the case where m = 0. Define
the oscillatory integral

Annales de l’Institut Henri Poincaré - Physique théorique
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Differentiating under the oscillatory integral sign and integrating by parts,
we deduce that for any pair of multi-indices a and /1

where 0 = is a nonnegative constant and k = is a positive
integer. In view of Kumano-go [ 11, Theorem 2.6, p. 74], we have

Combining (2.3) and (2.4), we see D) ( x ~ -s is an

operator with symbol belonging to Applying the Calderôn-Vaillancourt
theorem, we get (2.2) with m = 0.
We next prove the lemma in the case where m is a positive integer. By

definition (see (1.2)), we see that

Note that p (~, D), ~ 1 0152 1  m, can be regarded as an operator
belonging to and that each seminorm of Sf,o of the symbol of

p (x, D) can be estimated by a constant multiplied by a seminorm
of of p (x, ç) (see Kumano-go [11, Chapter 2, § 2, Theorems 2.5 and
2.6]). Then applying the result obtained in the first part of the proof to

p (~, D), we see that for any a with 1 0152 1  m

where C = Cms and R = Rms are a nonnegative constant and a positive
integer respectively. Combining (2.5) with (2.6) gives the lemma. D

To prove Theorem 2.1, we first note that oo )

where .~’ is the Fourier transform:

Vol. 63, n° 3-1995.
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We shall show a representation formula for Ro (z) in terms of the resolvent
of the free Schrôdinger operator -A. For 1  a  b  oo, we define a
subset K = Kab of the complex plane C by

It is easy to see that

We choose a cutoff function l’ E Co (R~ ) so that

We now introduce simple pseudodifferential operators: for each z E K,
define

Note that

The représentation formula for Ro (z) follows immediately from (2.7) and
(2.10):

Annales de l’Institut Henri Poincaré - Physique théorique
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On the operator A ( z ) we have

LEMMA 2.4. - Let s &#x3E; 0. Then for each z E K, A (z) can be

uniquely extended to a bounded operator on Ls . Furthermore A (z) is a

B (L2s)-valued continuous function on K.

Proof - Since 7 (ç) ( ~ ) belongs to it follows from Lemma 2.2 that

-y (D) (D) can be extended to a bounded operator on L;. The fact that
A ( z ) = z I + l’ (D) ( D ) implies the lemma. D

As for the operator B (z) we have

LEMMA 2.5. - Let s &#x3E; 0. Then for each z E K, B (z) can be uniquely
extended to a bounded operator from LS to Hs . Furthermore B (z) is a

B Hs )-valued continuous function on K.

Proof - Noting (2.11 ), we see that for any 0152 there corresponds a
constant Ca &#x3E; 0 such that

for all z E K. Lemma 2.2 together with (2.13) implies the first conclusion
of the lemma. Furthermore, noting the indentity

1 1

we have for any 0152

Lemma 2.2 together with this inequality implies the second conclusion of
the lemma. D

Proof of Theorem 2.1. - Let 03BB &#x3E; 1 be given. Choose a and b so that

1  a  A  b. We define the set K by (2.8). According to Lemma 2.3,
we have

Vol. 63, n° 3-1995
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In view of Lemmas 2.4 and 2.5, it follows from (2.14) and (2.15) that
conclusion (i) holds, and moreover, that R~ (A) = r~= (À2 - 1) A (A) +
B (a).
To show conclusion (ii), we note that Tô (z) defined by

are H2-s)-valued continuous functions (see the proof of Agmon
[1, Theorem 4.1]). Now conclusion (ii) is apparent from this fact and
Lemmas 2.3, 2.4 and 2.5. D

In view of the proof of Theorem 2.1, we obviously have:
COROLLARY 2.6. - Let K ~9 ~~ Thpn

Remark. - The proof of Theorem 2.1 is based upon the
decomposition (2.12) in Lemma 2.3. Note that it is possible to prove
Theorem 2.1 with the aid of the following decomposition

instead of (2.12). The decomposition (2.16) is an analogue of the
decomposition of the resolvent of the free Dirac operator, the decomposition
which was exploited in Balslev and Helffer [3]. The reason to use the
decomposition (2.12) is that it is suitable to derive radiation conditions for
Ho. See Theorem 4.3 in Section 4.

3. ASYMPTOTIC BEHAVIOR OF THE RESOLVENT OF Ho

In this section we study in detail the asymptotic behavior of the extended
resolvents Rt (A), of which existence has been established in the preceding
section. Throughout this section, we regard Râ (A) as operators belonging
to B (L;, L2 s ) rather than B (L;, 

PROPOSITION 3.1. - Let s &#x3E; 1 /2. Then

Proposition 3.1 follows from Murata [14, Proposition 4.1 ], in which he
discussed high energy resolvent estimates for a general class of first order
pseudodifferential operators. However, we should remark that a proof along
the lines of Pladdy, Saitô and Umeda [17, Theorem 2.3] is possible.
We now state the main theorem in this section.

Annales de l’Institut Henri Poincaré - Physique théorique
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(i) R~ (A) converge strongly to 0 as a -~ oo, i.e. for any f E Ls

Hère we make a remark. The asymptotic behavior of the extended
resolvents Rô (À) demonstrated in Theorem 3.2 is exactly the same as that
of the extended resolvents of Dirac operators (cf [17], [18]), but quite
different from that of extended resolvents of Schrôdinger operators. In

fact, the norm in B (L;, of the extended resolvents of Schrôdinger
operators goes to 0 with the rate ~-1~2 as À tends to oo. See Saitô [20], [21].
We shall give the proof of Theorem 3.2 with a series of lemmas.

Then xo is dense in Ls for any s E R.
For the proof, see [ 18, Lemma 7.1 ] .

LEMMA 3.4. - For z E C, put

Then for any L &#x3E; 1 and any 0152, there corresponds a constant CaL&#x3E; 0
such that

Proof. - We can prove property (i) by induction on the length of a.
Property (i) holds for 1 a 1 = 0, since 1 ~ ) - z ~ 1 &#x3E; ~ z ~~2 for ( ~ )  L,
~ z ~ 1 &#x3E; 2 L. To show that property (i) holds for 1 al&#x3E; 0, we differentiate
the both sides of (( ~ ) - z) R (ç; z) = 1. In order to show property (ii),
we use the indensity R (~; zl) - R (~; z2) _ (zl - z2) R (~ zl) R (~ z2)
and property (i). We omit the details. D

In the following lemma we regard S (R~) as a Fréchet space equipped
with the semi-norms

Vol. 63. n° 3-1995_
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LEMMA 3.5. - Suppose that f E S ( Rn ) , and that

for some L &#x3E; 1. For each z E C with z ~ 1 &#x3E; 2 L, define

where l~ (~; z) is the function introduced in Lemma 3.4. Then

(i) For each .~ &#x3E; 0, there corresponds a constant C~ such that

Proof - Differentiation under the integral sign and integration by parts
give

It follows from property (i) of Lemma 3.4 that

which gives conclusions (i). Similarly, using property (ii) of Lemma 3.4,
we have

This inequality yields conclusion (il). D

Proof of Theorem 3.2 (i). - In view of Proposition 3.1 and Lemma 3.3,
it is sufficient to show that for any f 

Let f E xo be given, and choose L &#x3E; 1 so that (3.1 ) is valid. Define

vz in the same manner as in Lemma 3.5. Since Ro (z) f = vz for z with

Annales de l’Institut Henri Poincaré - Physique théorique
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0 (recall (2.7)), we see by Theorem 2.1 (i) and Lemma 3.5 (ii) that
Rô (~) f = va for A &#x3E; 2 L. By virtue of Lemma 3.5 (i), we obtain

which implies (3.3). D

We shall prove conclusion (ii) of Theorem 3.2 with making use Qf

LEMMA 3.6. - There exists a sequence {hj}~j=1 ~ S (Rn) such that

Proof of Theorem 3.2 (ii). - Let be the sequence given in

Lemma 3.6. For s &#x3E; 1/2 we have

which, together with Lemma 3.6, implies

This is equivalent to conclusion (ii) of Theorem 3.2. D

There remains to give the proof of Lemma 3.6, in which we need

LEMMA 3.7. - Let c.p be a real-valued C1-function defined on the interval
[-1, 1]. Then

We omit the proot of Lemma 3.7, which is an exercice of residue calculus.

Proof of Lemma 3 .6. (Following the idea of Yamada [27]) - Choose an
even function p so that

and

Define hj E S (Rn) by

Vol. 63,n° 3-1995.
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It is easy to see that

Let a be a given multi-index. Using the Plancherel theorem, we have

The integral on the right hand side is bounded by

where Cacp is a constant depending only on 0152 and p. A simple calculation
shows that the integral in (3.8) is bounded by a constant independent of j.
Combining this fact with (3.7), we obtain

Since a is arbitrary, we can conclude from (3.9) satisfies

property (i) of the lemma.
We next show property (ii). Taking into account (3.6), and passing to

the polar coordinate, we get

where wn denotes the surface area of the unit sphere in Rn . With a change
of a variable we have

where we have used (3.4). We now take z = j + 2 ± i p (JL &#x3E; 0) in (3.10)
and take the limit of (3.10) as 0. Then, in view of Theorem 2.1 (i)
and Lemma 3.7, we see that

Annales de l’Institut Henri Poincaré - Physique théorique
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V(~+J+2)~-1

Since ~p2 is an even function, one can easily see that the right hand side
of (3.12) is equal to 0. It follows immediately from this fact, (3.11 ) and

~

We first establish the uniqueness theorem for the equation (-0394 + 1 -
= f whose solution satisfies the radiation conditions mentioned in the

introduction. Hère we introduce some notation. For tempered distributions

~,~=(2~) ,~ ~ ~~ ~ ~ 
;I"-h!&#x3E;~+~,,,.... ~~ TT~~~~j~-. 4-_~....~~~-~ ~~ 

jk = l, ..., n).

THEOREM 4.1 (Uniqueness). - Let 1/2  s  1. Suppose that u E

(4,i) (v -Ô + 1 - A)u == U

"mA im addition +L-+ n, o-+;o£no of

B.. fi 
’G V n- -

Then u vanishes identically.
"’1: ,_, ., 0 "’" , ~"»
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Proof - Let p be a test function in S (R~). Then we have

where we have used (4.1 ) and (4.2). Thereby u satisfies the equation

which, togother with the assumption that u E L2 s n Hl ~, implies that
u E Hi ~ . Since u satisfies either (4.3+) or (4.3-), we can apply Ikebe-Saitô
[10, Theorem 1.5] ] with L = - 0 and conclude that u

vanishes identically. D

DEFINITION 4.2. - The conditions (4.3+) and (4.3-) appeared in

Theorem 4.1 are called the outgoing and the incoming radiation conditions
respectively.
We note that the radiation conditions introduced here are the same for

Dirac operators (cf. Pladdy, Saitô and Umeda [19]).

We now state a theorem, which gives a characterization of R~ (A) by means
of the equation ( -A + 1 - A) u = f with the radiation conditions.

THEOREM 4.3. - Let 1/2  s  1 and h &#x3E; 1. Then uô (A, f ) defined as
above are in n and satisfy the equation

Moreover, ~cô (~, f) satisfies the outgoing radiation condition (4.3+), and
ug (~, f) satisfies the incoming radiation condition (4.3-).

Proof - For simplicity, we give the proof only for uô (~, f ) . For z with
Im 0 and f E Ls , we set

By Theorem 2.1 (i), we have

0. Since Uo (z, f ) E Dom (Ho), we have

Annales de l’Institut Henri Poincaré - Physique théorique
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for cp E S (R~). The left hand side of (4.5) is equal to

Taking the limit as 0, we conclude from (4.4), (4.5) and (4.6) that

Since R) (A) E B (L;, H1 S), it is evident that ut (A, f ) E Lz S n It

remains to show that ut (A, f ) satisfies the outgoing radiation condition.
According to Corollary 2.6, the function ut (A, f ) can be decomposed into
the following sum:

Since A (A) f E Ls by Lemma 2.4, it follows from Ikebe-Saitô [10,
Theorem 1.5] that

Summing up, we have shown that ut (A, f ) satisfies the outgoing radiation
condition. D

- 5. THE EXTENDED RESOLVENTS OF H

The task of this section is to extend the results obtained in the previous
sections to the operator H = Ho + V. Unfortunately, we have to confine
ourselves to the operator H with a small short-range potential for a technical
reason (see Theorems 5.5, 5.6 and 5.7), although we anticipated that the
results in the previous sections could hold for H with a general short-range
potential, on which we would probably need to impose some differentiability
conditions. We emphasize that we do not require differentiability of the
potential.

AssuMpriON 5.1. - V (x) is a real-valued measurable function satisfying

for some positive constants 6- and C.
It is easy to see that under Assumption 5.1 the multiplication operator

V = V (x) x is a bounded selfadjoint operator in L2. As a result,

Vol. 63, n° 3-1995.
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H = Ho + V is a selfadjoint operator in L~ with domain The resolvent
of H will be denoted by R. (z) : R (z) = (H - z)-1, z E p (H). The
hypotheses of the main theorems in this section will be expressed in terms
of the quantity

Throughout this section we assume that

LEMMA 5.2. - For a &#x3E; 1 set

Then

Proof. - According to Theorem 2.1 (ii), (z) are B (Ls , 
continuous functions. Therefore Il Rô (z) _S &#x3E; are locally bounded. This
fact together with Murata [ 14, Proposition 4.1 ] implies the lemma. D

LEMMA 5.3. - Let V obey Assumption 5.1. Then the multiplication operator
V can be extended to a bounded operator from to Ls , and

Proof - Let f E L2 S . Then we have

B. / 11 ~1 Il U

Combining Lemma 5.3 with Lemma 5.2 gives

LEMMA 5.4. - Let V obey Assumption 5.1, and let J~ (a) be as in

Lemma 5.2. Then for z ~ J* (a)

Annales de l’Institut Henri Poincaré - Physique théorique



293RADIATION CONDITIONS FOR RELATIVISTIC SCHRÔDINGER OPERATORS

In Theorems 5.5, 5.6 and 5.7 below, the number a is supposed to be close
to 1. Note that by Theorem 3.2 p~ (a) are bounded from below by a positive
constant for all a &#x3E; 1. We now establish the limiting absorption principle
for H and derive the asymptotic behavior of the extended resolvents of H
which is the same as that of 7~ (A) (cf. Theorem 3.2).
THEOREM 5.5. - Let V obey Assumption 5.1 and let s be as in (5.2). Let

(i) any 03BB &#x3E; a, there exist the limits

(ii) For 03BB &#x3E; a, 7 + (A) are invertible in Ls and

Proof - We give the proof only for R+ (A). We start with the equation

We need to regard (z) (= (z)) as an operator acting in L;.
Since w (V) p+ (a)  1 by assumption, we see by (5.5) that I + VR) (z)
is invertible in Lç for any z E J+ (a), and that

where the convergence is uniform in J+ (a). In view of Lemma 5.3 and
Theorem 2.1 (ii), is a B (L2s)-valued continuous function on
J+ (a). Hence so is (I + VR) (z))-1. By (5.7) we have

which, together with Theorem 2.1, implies conclusions (i) and (ii).
To prove conclusion (iii), we use (5.8), conclusion (ii) and Lemmas 5.2

and 5.4. We then obtain

for any f ~ Lfl and any integer N, where we have used Theorem 3.2 (i).
Since w (V) p+ (a)  1, and since N is arbitrary, we conclude from (5.9)
that 

... Il -r-.....L /" ’B 

Vol. 63, n° 3-1995.
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There remains to prove conclusion (iv). Suppose, to get a contradiction,
that

Since, by (5.7),

Lemma 5.4 gives

so that liminf Il Rô (~) _s) = 0. This contradicts conclusion (ii) of

Theorem 3.2. D

THEOREM 5.6 (Uniqueness). - Let V obey Assumption 5.1 and let s be as
in (5.2). Let a &#x3E; 1 and cv (V) p~ (a)  1. Suppose that u E f1 Hl ~
satisfies the equation

and, in addition, that u satisfies either of

Then u vanishes identically.

Proof. - We show the uniqueness only for the solution of (5.10) satisfying
the outgoing radiation condition ( 5 .11 + ) . Since Vu EL;, we see by
Theorem 4.3 that

The right hand side equals

by (5.10). Thus we obtain

It follows from the hypotheses of the theorem and Theorem 4.3 that

u + Rt (A) Vu belongs to f1 and u (A) V u satisfies the
outgoing radiation condition. Applying Theorem 4.1, we get

Annales de l’Institut Henri Poincaré - Physique théorique
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Since

by Lemma 5.4 and the hypothesis of the theorem, we see that 
is invertible in L2 s, and therefore we conclude from (5.13) that u = 0. D

Finally we state a theorem which, together with Theorem 5.6, gives a
characterization of R~ ( a ) by means of the equation

with the radiation conditions. To do so, we write

THEOREM 5.7. - Let V obey Assumption 5.1 and let s be as in (5.2). Let
a &#x3E; 1 and cv (V) p:í: (a)  1. Then u:í: (03BB, f) with 03BB &#x3E; a are in n H1loc
and satisfy the equation (5.14). Moreover, u+ (~, f) satisfies the outgoing
radiation condition (5.11+), and u- (~, f) safisties the incoming radiation
condition (5.11-).

Proof. - We give the proof only for u+ (~, f). By Theorem 5.5 (ii),
we have

Applying Theorem 4.3 to the right hand side, we see that u+ (A, f ) E
D Hl ~, and that u+ (A, f ) satisfies the outgoing radiation condition.

In order to show that u+ (A, f ) satisfies the equation (5.14), we define

Since u (A + i f ) E Dom (H) , we see that for cp E S (R~)

It follows from Theorem 5.5 (i) that u (À + i ~c, f ) - u+ (A, f) in as

~c 1 0. Now, taking the limit of (5.15) 0, we conclude that u+ (A, f )
satisfies the equation (5.14). D
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