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ABSTRACT. - We present a construction of semi-classical vectors

satisfying the Schrodinger equations modulo h*. These vectors have

nice regular properties, in particular they don’t have turning points. An
application is given to the calculation of matrix elements. The present
work is meant as an introduction to a more general theory which is

announced.

RESUME. 2014 Nous présentons une construction de vecteurs semi-clas-
siques satisfaisant 1’equation de Schrodinger modulo h*. Ces vecteurs ont
de bonnes proprietes de regularite et en particulier n’ont pas de points
tournants. Nous donnons une application au calcul des elements de

matrice. Ce travail est une introduction a une theorie plus générale.
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1. INTRODUCTION

The theory of semi-classical approximations of eigenstates of self-adjoint
operators has a long history in quantum mechanics, since the WKB

approximation goes back to its early days ([ 10], [ 11 ]). As it is well known,
a defect of the WKB wave function is that it possesses singularities at the
so-called "turning points". A formulation of WKB due to Voros [1 1] ]
avoids this "caustic" problem, by representing locally the eigenfunction in
Bargman space in a neighborhood of the corresponding classical trajectory.
However this approximation is not defined globally and so doesn’t belong
to the Hilbert space where the spectral problem is posed.
The goal of this paper is to construct semi-classical approximations of

eigenstates having the property that they belong to the Hilbert space where
the operator acts, and to its domain as well (in fact they are perfectly
smooth functions). Although a more general theory of this construction
is available, (see [7]), here we want to concentrate on the very simple case
of a one dimensional differential operator with a polynomial symbol. In
this case everything can be computed explicitly and, we hope, physically,
avoiding the microlocal machinery needed in the general case. In the last
section we will indicate in what sense the present paper is a special case
of a general theory, and elaborate on the geometric background of the
construction.
The ideas of this paper can be summarized as follows. Let us consider

a pseudo-differential operator a (x, hOx) on L2 (R), with symbol a (x, ~)
analytic in both x and ~. We would like to find, for every N, numbers EN
and vectors such that

1 (1)

for some constant CN and for infinitely-many values of h having zero as
a cluster point. EN and WN are allowed to depend on h, and should have
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359A CONSTRUCTION OF QUASI-MODES USING COHERENT STATES

a good asymptotic behavior as h - 0. The first idea is to use coherent

states to construct Recall that a coherent state - or wave packet - or
gaboret - is a vector ~r~x, ~~, indexed by a point (x, ~) of phase space, (best)
localized in phase space around (x, ~), namely

An easy computation shows that

However, (3) doesn’t give any spectral information: the mean level

spacing in one degree of freedom is O (h), and so the spectral prediction
of (3), namely that there is an eigenvalue within ~ 1 ~2 of E, is already
known to be true, trivially. Moreover, (3) is unsatisfactory because: (i) it
possesses a big degeneracy, namely all the ~r~x, ~~ with a (x, ~) = E are
associated to the same eigenvalue, and (11 ) ( §s~~, ,~, (x, ~) E 1R2 = T* (IR)} is

not a basis of L 2 (IR) and in particular one cannot define an operator
which would be diagonal on { ~}.
The idea is to go to next order in h and remove the degeneracy by

taking for a suitable linear combination of the B)/~ ~ with a (x, ~) = E,
a combination which would satisfy (1) to order hN.
The main result is that this is indeed possible: to each connected

component r of the energy surface S2E = ~ (x, ~), a (x, ~) = E} and any
given N we can associate a vector B)/r, linear combination of ~r~x, ~~ with
(x, ç) E r, which satisfies ( 1 ) to order N for a suitable set of values of h.
Thus WN will be of the form

where (~c(~), ~(~)) is a parametrization of r as a trajectory of the Hamil-
tonian flow of a, and T is its period. The set ~ of values of h for

which the estimates ( 1 ) holds is determined by a condition of the Bohr-
Sommerfeld type. We will in fact discuss two Bohr-Sommerfeld conditions:
the classical one of the Physics literature, namely

and a second one which we will call the geometric BS condition,

Recall that the original meaning of (5), in the physics literature, is as a
rule for finding (approximate) values of the quantum energy levels: one

Vol. 59, n° 4-1993.



360 T. PAUL AND A. URIBE

views (5) as a condition on the value of the energy of r, with h having its
physical value. The values of the energy picked up by (5) predict exactly
the spectrum of the harmonic oscillator. In general, as is well-known, the
prediction is accurate to order h2. For this, the presence of the famous 1/2
is necessary. 

-

In the present semi-classical context, we first fix a regular trajectory r
arbitrarily, and view both (5) and (6) as defining the set of values of h for
which our estimates will hold. When dealing with the geometric BS
condition, (6), one has to make a correction of order h to the energy of
the trajectory: we will prove that one must take

where E is the energy of rand T is its period. No such correction is
necessary if h is determined by the physical BS condition, (5).
About the construction of gs, one can distinguish two issues: the determi-

nation of the amplitude s (which will be a symbol in and of the phase,
f, in the ansatz (4). One should notice that in the expression (2) for the
coherent states one has tacitly chosen a phase for them: multiplying the
right-hand side of (2) by a complex number of modulus one would not
change its localization properties. The choice off [see ( 12)] will be explai-
ned in paragraph 5 in terms of geometric quantization. Briefly, the space
that labels the coherent states with all possible choices of phases is not
the plane, it is the pre-quantum circle bundle x : G - [R2 of the plane. [The
choice (2) corresponds to a canonical trivializing global section [R2 -+ G.]
Our construction should be thought of as taking place up on G, which is
a "periodic" version of the Heisenberg group. The meaning of the
integral (4) is as a linear combination of the coherent states along a hori-
zontal lift of the trajectory r. The geometric BS condition is that such a
horizontal lift be closed. Actually the amplitude s must satisfy certain
transport equations that can be solved on sections of the Maslov line
bundle of the horizontal lift of r, which is to say, on the space of anti-
periodic functions on this horizontal lift.

In section 2 we state the main results and prove them in section 3.
Section 4 is devoted to a result on the classical limit of matrix elements
of an observable and in section 5 we explain the link between our construc-
tion and more geometrical objects.

2. THE MAIN RESULTS

We now turn to a precise statement of the main results. Let a (x, h Dx)
be a pseudo-differential operator with Weyl symbol a (x, ~). Although

Annales de l’lnstitut Henri Poincaré - Physique théorique



361A CONSTRUCTION OF QUASI-MODES USING COHERENT STATES

there are several classes of symbols ([9], [8]) for which the results of this
section hold, for simplicity we will concentrate here on the case where

a (x, ~) is a real polynomial in (x, ~). In this case is a differential

operator with polynomial coefficients, obtained by the Weyl rule: it is the

operator a (x, h DJ obtained from the polynomial a (x, ç) by symmetriza-
tion ordering in x and h Dx. We suppose that a (x, h DJ is solf-adjoint and
has discrete spectrum.
We denote by cp~ the Hamilton flow associated to a (x, ~):

with

Since we are in one dimensional the flow is integrable and each regular
trajectory is periodic and fills up a connected component of the surface
energy

Let r such a trajectory with period T, and let

be a potential 1-form on 1R2 = T* (R), so that - da is the symplectic form
on T+ (R). To each (x, ç) we associate the vector of L2 (IR) defined by
equation (2). To r and to a smooth function s (t) of a real variable, anti-
periodic of period T [that is s (t + T) = - s (t)] we associate the vector

where (x (t), ~ (~)) is a parametrization of r as a trajectory of the Hamil-
tonian flow of a. This means that we choose once and for all an origin
in r (Changing the origin simply multiplies our quasimode by a constant).
The choice of this particular linear combination of coherent states has
several motivations in terms of geometrical considerations exposed in [7].
Another motivation comes from the propagation of coherent states as
shown in Hagedorn [3] and Litteljohn [6]: is the mean of the semiclass-
ical evolution of a coherent state pined on r, conveniently weighted.

Remarks. - ( 1 ) The fact that s (t) has to be T anti-periodic is going to
become clear later on, and is related to the metaplectic representation [s (t)
depends on h as well]. (2) The phase factor inside the integral is crucial
to the construction. Its geometry will be examined in paragraph 5.

Vol. 59, n° 4-1993. 
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362 T. PAUL AND A. URIBE

THEOREM 2 , I. - With the previous assumptions, let r be a regular

trajectory of energy E, periodT, "action" A = 1 2 0393 (§ dx - x d©) and flow

(x(t), § (t)), te [0, T]. Then there exist a sequence of numbers and a
sequence of smooth T antiperiodic functions, (t)), such that, f we let

and

for each N E N &#x3E;_ 1, there exists CN &#x3E; 0 such that for all h small enough
and of the form

A

one has

and

Moreover

and

[in (16) the standard branch of the square root is implied].
An easy (and standard) consequence of Theorem 1 is:

COROLLARY 2.2. - With the same hypothesis, there exists eigenvalues
of a (x, h Dx) satisfying, for each N and all h of the form ( 13)

Moreover, if there exists a constant y such that

has only simple eigenvalues, where 6 (a (x, is the spectrum of
a (x, h Dx), then, if is the eigenvector of eigenvalue X, we have

Annales de l’lnstitut Henri Poincaré - Physique théorique



363A CONSTRUCTION OF QUASI-MODES USING COHERENT STATES

Remarks. - 1. The example of the harmonic oscillator shows that (13)
is in fact necessary; it is related to the Bohr-Sommerfeld quantization
condition which says that the semi-classical eigenvalues are the energies E

satisfying

2. The condition of non degeneracy in the Corollary is necessary and

corresponds to having only one connected component r on Otherwise,
as well known, the eigenvector may be a linear combination of Wri’ with
ri c 

3. A simple computation shows that, if a (x, +20142014~20142014’(the
harmonic oscillator), the corresponding approximation S1 

is in fact

exact.

Working with the geometric Bohr-Sommerfeld condition, (6), the result
is the following:

THEOREM 2. 3. - In the statement of the previous theorem we can replace
"anti-periodic" by ’periodic ", and ( 13) by

and the conclusions ( 14) and ( 15) still hold. The formulae (16) should be
replaced with

’"’ -

3. PROOF OF THEOREM 2.1

3.1 Bargman space and preliminaries

Since the proof is going to take place in the Bargman space, we first
briefly recall some basic facts about it (see [ 1 ]). Bargman space, B, arises
when one introduces a complex polarization on T* R = [R2; our normaliza-
tion is

Vol. 59, n° 4-1993.
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B is defined as:

B={g(z, z)=e-(zz/2 )f(z), with f entire analytic and

B is a Hilbert space with reproducing kernel, which means that there
exists a family of vectors pz E B, indexed by zeC, such that

Explicitly

There is a very natural relationship between the pZ and the coherent states
~x, ~ defined earlier, given by:

LEMMA 3 . 1. - The map U : L2 (i~) -3 B defined by the integral kernel

namely

is a unitary map. Moreover,

where z and (x, ç) are related by (20).
For the proof of this see the original paper by Bargman [1]. Another

well known "basic" fact about coherent states and Weyl symbols is:

LEMMA 3 . 2. - Let a (x, hDx) be as in the hypothesis of Theorem 1,
namely given by a polynomial Weyl symbol. Then

Annales de l’lnstitut Henri Poincaré - Physique théorique
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Proof - First note that:

b being analytic in 21 and z2. We first compute the diagonal term of b,
namely:

A direct computation gives [2],

We obtain z2j by analytic continuation in zl. D

Remarks. - (i) The operator e-~~~2~ a~2 makes sense when applied to
a polynomial.

(ii) The function

is nothing but the Hamiltonian a (x, ç) written in complex coordinates.
Since a was assumed to be a polynomial, h has a unique extension to a
function h {zl, 22) of two complex variables, holomorphic in the first and
anti-holomorphic in the second. This is the function to which the operator
~-(~/2)~ az2 is being applied.
To prove our Theorem we need to estimate

By the previous formulae

We will obtain the estimate of (27) from a pointwise estimate of

Let us define

Vol. 59, n° 4-1993.
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Then one computes:

which can finally be written as

where

This integral is the object we must study. The proof of our Theorem
consists in estimating I (z 1) asymptotically by the (complex) stationary
phase method [4], and showing that for a precise choice of aN and EN,
I (z 1) can be made of order O (hN + 1). Let’s begin by finding the critical
points of the phase appearing in (30), which is

where zi is regarded as a parameter. We get:

Since z= 20142014=- and r is a regular trajectory (and so x and 03BE do not

vanish simultaneously), ~0. Hence the phase is stationary precisely for t
such that Accordingly, we will break the analysis in the two
cases: z 1 on r or not. Stationary phase for z1~0393 will dictate what the 03B1k
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and ck should be. The main difficulty of the proof is in dealing with the
case for each such z 1 I (z 1) is rapidly decreasing but no t uniformly
as z 1 approaches r. We will deal with that case in paragraph 3.4 ; we now
look at the case z 1 eF.

3.2. Estimates on r.

Let us first take then there is a critical point at t = t 1 such that

Z(t1)=Zl. Moreover

is purely imaginary.

LEMMA 3 . 3. - There exist coefficients (3k (tl, zl) such that (30) is equal
to

modulo ~N+ 1, uniformly on zl E I-’. Moreover,

...OJ

Proof - The proof is a direct application of [4] Theorem 7. 7 . 5. The
same theorem gives explicit formulas for the coefficients J3k. For example,
the coefficient of 0 is

equal to zero automatically in the present case when z1~0393. Hence the
sum in (33) indeed starts with k =1. A more involved calculation, which
we will omit, proves (34). D

More generally, computing the coefficients given by the stationary phase
method and re-ordering according to increasing powers of h, one finds
that the general form of f3k (tl, zl) is

where is a smooth function with We will use
this fact in a moment.
Now the rlj and c~ in our main Theorems are obtained by solving the

equations

Vol. 59, n° 4-1993.
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and imposing the appropriate periodicity condition on the a . Solving
Pi ( t, z 1 ) = 0 gives, by (34),

up to a multiplicative constant.
Remarks. - (i) If we choose Ci==0, ao is T-antiperiodic,

(ii) If we choose c 1 = 03C0 T, then ao is T-periodic.
For general k, equations (35) and (36) and the method of variation of

parameters give that

If we choose

then, arguing by induction, (38) is a periodic (resp. anti-periodic) function
= of t if ao is periodic (resp. anti-periodic).

In conclusion, in this subsection we have proved the existence of the
ak, ck with the desired periodicity properties, such that I (z 1) is O (hN) for
all N, uniformly on zi e r.

3.3 The norm estimate

Next we prove the norm estimate ( 14). By definition,

which, by unitarity of U and (28), can be written as

Introducing the expression (22) for the reproducing kernel, we finally
obtain

Annales de l’lnstitut Henri Poincaré - Physique théorique
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We now apply the method of stationary phase to this integral, for small
h. The critical points of the phase are given by the equation t = t’. A

straightforward calculation shows that this is a non-degenerate critical

manifold, and that the stationary phase method gives

Since

we obtain the desired result (14). This calculation explains the perhaps
surprising normalizations appearing in the definition of SN.

3.4. Estimates near r.

To obtain the norm estimate of Theorem 2.1, we need to estimate (30)
with We begin by noticing that the analysis can be restricted to a
neighborhood Q of r: away from r, I (z 1) can be easily bounded (in
modulus) by

On can derive from this that

Thus we are left to estimate I(zi) inQ. We will work first under the
standard Bohr-Sommerfeld condition, and with c~ = 0; we will point out at
the end of this section how to change the argument to prove Theorem 2 . 3.
As already noticed, for z1~03A9B0393 fixed, (30) decreases rapidly with h

but not uniformly in zl, as z~ approaches r. We will however establish
the following key estimate:

THEOREM 3 . 4. - As h --~ 0 along the BS values and with Z~ one has
an asymptotic expansion of the form

with and all the ~ik (zl) analytic functions of zl E SZ, and Q a smooth
function of zi independent of h (equal to if zl E I-’). The expansion is
uniform on zl Moreover:

Vol. 59, n° 4-1993.
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and

As a consequence, if we pick the ak, ck so that z 1 ) = 0 for z e F,
then k must vanish on D, by analyticity. By integration over Q this,
together with (43), gives the desired norm estimates.
The idea behind the proof of Theorem 3.4 consists of deforming the

contour of integration of (30) in order to "cath" a given zi 1 as a critical
point of the phase. This can be done since:

PROPOSITION 3.5. - Under the Bohr-Sommerfeld condition, (5), the
integral in the expression (30) for I (zl), is the integral over r of an analytic
function defined in a neighborhood Q of r.

The analytic extension of the integrand is also an oscillatory function.
After proving Proposition 3. 5, we will define suitable deformations of the
contour of integration and apply the method of complex stationary phase
to obtain the estimates. This way of using analyticity in a neighborhood
of r to obtain the estimate is inspired by methods used by Voros [ 11 ].

Let us begin the proof of Proposition 3 . 5. Re-write the integral (30) in
the form

where

and

(45) can then be rewritten as

Annales de l’lnstitut Henri Poincaré - Physique théorique
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where, implicitly, is the inverse of the function Z (t). In order to
obtain the analytic continuation of the integrand, we define a multi-valued
function S (z) as the solution of the equation

whose derivative restricted to r is

where

and E is the value of a on r. 

’ 

The function h is nothing but the symbol of a (x, h Dx) on the complex

coo r d inates z = 
x + i ~ and z = 

x l ç 
, while ( 47 ) is the Hamilton-Jacobi

J2 J2
equation defining a canonical transformation that would change h into a
function of z alone.

LEMMA 3 . 6. - If r is a regular trajectory, the problem (47, 48) has a
unique (multi--valued) solution analytic in an annular neighborhood Q of r.
The derivative G = S’ is single-valued on Q and

where A = 1 ds - x is the action o f I-’.
2 r

Proof. - We first show that the equation

has a unique single-valued analytic solution in an anular neighborhood of
r and satisfying

G (z) = z is obviously a solution on r by definition ofr={z, h (z, z) = E }.
Local existence and analyticity in a neighborhood of r is given by the
implicit function theorem, since

Being equal to z on r, the solution is necessarily single-valued. To show
(49), use (50) plus the identity

Vol. 59, n° 4-1993.
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Proof of Proposition 3 . 5. - Since

a primitive of G (z), S (z), can be chosen so that

Moreover, since ock (t) = uo (t) éik (t),

where aN (t) is T-periodic. Writting

with

and noting that, by the equations of motion

we see that we can write I’ as:

From this expression we see that Proposition 3.5 will follow from the
following: .

LEMMA 3 . 7. - If r satisfies the Bohr-Sommerfeld condition ( 13),

is a single-valued analytic function of z globally for z in a neighborhood
of r.

Proof. - The function S (z~ is analytic in z, so it is enough to see that

is a single-valued function. We see from (49) that, under the BS condition,

Annales de l’lnstitut Henri Poincaré - Physique théorique
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where means integration over any contour homologous to r. It follows
that, after z winds around once in the annulus Q, changes sign,
and once can see that the square root in (55) changes sign also, since

on r .

and the velocity vector z winds around the origin once as t ranges from
zero to T. D

This finishes the proof of Proposition 3. 5. By the Cauchy formula we
obtain:

COROLLARY 3.8. - Under the Bohr-Sommerfeld condition, the integral
I’ given by (54) doesn’t depend on the contour inside the neighborhood
defined by Lemma 1.

Having proved Proposition 3.5, we now define a suitable family of
deformations of r yielding contours for which I, defined as an integral
on this contour, will have a given zi as a critical point. Such deformations
will be given by a family of ODEs parametrized by zl. We first notice
that the function S’ has an inverse S’ ~ 1 on S~ : S’ -1 is analytic and single
valued on Q since it satisfies

on Q, and

on r. Let us now consider the equation

where

If ZI E r, is a trajectory of the original Hamiltonian flow, since
S’-l on r. Consider now the curve :

LEMMA 3.9.

where h (z, ?) (z, 9). Moreover, ç (t) and z t are both periodic flows
with the same period T as r.

Proof - The first part follows easily from the chain rule. Since

hz (S’ (Q, 0 and hg(zi, are analytic functions in ç and z 1, they
induce analytic flows . In particular if ~ (i, ~ (0» = ç (t) by (58), then ()) (TB -)

Vol. 59, n° 4-1993.
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is analytic in ç (0). Ç) = ç By analyticity, 03C6 (T, Ç) = ç
on Q. The same argument is valid for Zl (~). 0

Theorem 3.4. - Let us call r 1 the curve defined by (58) for

r

The fact that I (z 1 ) has a critical point at t = t 1 is by the definition of
zi (t). Conditions (b) and (c) follow from simple calculations. The impor-
tant fact is (44), which we obtain by applying the method of stationary
phase to the integral (59). We need to show: (i) analyticity of the
coefficients ~, and (ii) uniformity on zi EQ. Both of these follow from the
method of stationary phase itself, and the fact that the flows zi (t) and
~ (t) depend analytically on the initial condition Zi. The coefficients ~ are
the result of applying differential operators with analytic coefficients to

and so are analytic themselves. Uniformity on Q follows because the
constants appearing in the method of stationary phase are bounded in the
Coo topology of the phase. Condition (a) follows from the fact that when
zi E r (59) reduces to (30). D

Proof of Theorem 2.3. - Theorem 2. 3 is proved in exactly the same
fashion, with the following minor changes. The geometric BS condition
translates into the fact that the exponential

is now a single valued analytic function of z~03A9. As noticed in remark (ii )

following (37) and in the remarks following (38), choosing ci = 2:.’makes

the amplitude T periodic, and hence its analytic extension single-valued.
So, again, I(zi) is the contour integral of a single-valued analytic function
on Q, and the rest of the proof is identical. 0

4. CLASSICAL LIMIT OF MATRIX ELEMENTS

In this section we are concerned by the following problem. Consider a
pseudo-differential operator of the form described before a (x, h Dx). Its

symbol a (x, ç) constitutes a one dimensional classical Hamiltonian; there-
fore, in a neighborhood of a regular trajectory, Q it possesses a system of

Annales de l’lnstitut Henri Poincaré - Physique theorique
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action-angle variables: there exists a canonical transformation C

such that a (C -1 (A, (p))=a(A), a function independent of cp. The results
of previous sections show that to each value of the action A of the form

is associated an appropriate eigenvector localized precisely on the trajec-
tory of energy a (A).

Let us now consider another operator b (x, h Dx). We would like to
compute semi-classically the following matrix elements:

where Wn is the (normalized) eigenvector of a (x, h Dx) of quantum number
n, concentrated on the trajectory of action A = (n + 1 /2) h.

THEOREM 4.1. - Let a (x, h Dx) and b (x, h Dx) be as above and let
(A, p) be the action-angle variables of a (x, ~). Let

the symbols of a (x, h Dx) and b (x, h Dx) expressed in the variables (A, cp).
Let

where

Then, under the hypothesis of Corollary 2. 2,

as n, m - 00 with I m - n bounded and ~C = .
h + 1 /2

This theorem says that, in the classical limit, the matrix elements Cn, rn
tend to the Fourier coefficients on the symbol of b (x, h Dx) expressed on
the action-angle variables of the symbol of a (x, h Dx).
The following is a small variation of Theorem 2:

THEOREM 4 . 2. - Cn, m - b (x, h Dx) has an asymptotic expansion
of the form:

Vol. 59, n° 4-1993.
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as (n, m) tend to infinity as in the previous theorem all 03B2ln-m computable in
terms o/’ = 20142014 p (A, p) e-i (n-m)03C6d03C6.

We will sketch the proof. Since we are under the hypothesis of
CoroUary 2.2, the eigenvectors can be approximated by a vector of
the form given by (!2) with ~ given by (t6), nameiy

with (~(~~(~)) is the flow on the trajectory r satisf ing
= (n + 1/2) h. The same is valid for with (X~ (t) = 0 ,r ~ ~’ 

B )2
(x’ (t), ~(~)) being the flow on r of action (m+ 1/2)h. Then Cn, m is
expressed, using Lemma 3.2 as an integral of the form: 

’

where

By the same method used to prove Theorem 2 .1, the left hand side of
(63) can be replaced by an integral of the form

when zer, z’ E r’ and )) and ~’ satisfy the Hamilton-Jacobi equations
associated to energies a ((n + 1 /2) h) for (j) and a((~+ 1 /2) h) for ~’, namely

and

Since for h small enough rand r’ are close, we can replace in (64) the
contour r’ by r. Moreover we get from (65) that
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But and2014 where T is the period of r. This means
az aA T

that

Then:

The stationary phase method gives now, in the integration over dt’, a
critical point at t’ defined by

i. e. t’ = t. A little computation gives

To finish the proof notice that t = cp, and that the first term of b (t, t) is
T

Theorem 4. 2 can be proved by the method of stationary phase, comput-
ing explicitly the terms in the expansion.
Remark. - In the case of the harmonic oscillator, the formula given

by Theorem 4. 2 is well known in physics [5].

5. GEOMETRIC INTERPRETATION AND GENERALIZATIONS

In this section we show how our construction is related to the theory
of Hermite distribution as pointed out in the end of the introduction. This
will give a geometrical interpretation of the BS condition, and explain the
relationship of our construction to the Heisenberg group.

Let’s begin, in analogy with the previous considerations, with a closed
simple curv, yo c I~2. Denote its action by A:

Let
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(where S = 1R/21t Z) be the trivial principal circle bundle endowed with
the connection form

Then P is a pre-quantum circle bundle of 1R2 with the symplectic form

The choice of the connection form is so that the curve yo has a closed
horizontal lift, y co P.
The space P is a "reduced" version of the Heisenberg group,

More specifically, consider on the group law

= (p, q, ~)’ (~~ q’, ~) = (~ +~~ + ~B ~ + ~ + (~~ - ~~)/2).
H - 1R2 is the natural pre-quantum R bundle of (f~2, dqdp) if we put on H
the connection form

LEMMA 5 . 1. - P is the quotient of (I-0 by the subgroup of the center

ana lne connection aA ts tne quotient oJ ri.

Proof. - The quotient only takes place in the R component;
since the variable e in (66) is 2x periodic, it is locally related to the
variable t by

It is clear that the connection form, aA, of the quotient connection is a
multiple of a. By the condition o~(~e)== 1, and (67), we get

We now recall a few well-known facts about the geometry and harmonic

analysis of the Heisenberg group (a good reference for this material is the
book by G. Folland [12]). The Heisenberg group is the boundary of a
strictly pseudoconvex domain (the Siegel upper half plane). Let us denote
by ~f the Bergman space of square-integrable functions on D-0 which are

non-tangential boundary values of holomorphic functions on the Siegel
upper half plane. (H is an unimodular group with invariant measure
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dqdpdt.) The group is represented on ~, the representation being indu-
ced by the left action of H on the Siegel upper half plane. This representa-
tion is reducible: it is in fact a direct integral of the Heisenberg representa-
tions of H :

where is the only irreducible representation of H where -i~/~t
is represented by the operator "multiplication by h". Notice that the

representations ~~ k =1, 2, ... are precisely those that
pass to the quotient P = and the quotient representations are faithful.
More precisely, P itself is the boundary of a strictly pseudoconvex

domain, ~ and its Bergman space is

The domain @ has two realizations: (i ) as the quotient of the Siegel upper-
half plane by ZA, and (ii ) as

The latter description of D is as the unit disk bundle of the dual of the
holomorphic hermitian line bundle over 1R2 = C with curvature dqdp.
Our analysis is based on the micro-local structure of the Szegö projector:

We will see that a fundamental geometric object associated with II is the
following symplectic submanifold of T* P:

THEOREM 5. 2. - The wave-front set of the Schwartz kernel of II is equal
to

More precisely, II is a Fourier integral operator of Hermite type associated
with this isotropic submanifold of T* P X T* P, in the sense of Boutet de
Monvel and Guillemin [ 13] .

In [13], Boutet de Monvel and Guillemin construct a symbol calculus
of Fourier integral operators of Hermite type. Although we won’t go here
into this theory, we will indicate however how our results can be recast
into a symbolic calculation of Hermite distributions. Consider the Borel
sum of the states which we have defined:
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First we claim the following:

THEOREM 5 . 3. - e is a distribution of the form II (u), where u is a
distribution on P conormal to a horizontal lift y of Yo. The wave-front set
of 0 is contained in

In fact, e is a Hermite distribution associated with the coisotropic
submanifold CY.
Remark. - Let u be a distribution on P conormal to y. The fact that y

is horizontal means that the connection form aA is conormal to it, and
Theorem 5 . 2 implies that the projection n (u) has wave-front set in Cy.
Now for every value of h of the form the Schrodinger

operator a (x, h Dx) can be realized in Denote the resulting
operator Ak. One can then form the "Borel sum" of these, i. e. the operator

acting on ~. Our second claim is that B is a zeroth order Toeplitz operator
on P, that is of the form

B=nQn,

where Q is a zeroth order pseudodifferential operator on P which can be
chosen to commute with I~I and with Do. It is not hard to see that in

constructing our quasi-mode we are solving the equation

fB - E (D0)1 (0) (P), (68)

where E is an unknown real classical symbol of order zero. This equation
can be solved symbolically, by an iterative procedure. At every stage one
has to solve a transport equation along y; the corrections to the energy
(which are the terms in the asymptotic expansion of E) are the zeroth
Fourier coefficients of the right-hand side of the equation; they must be
subtracted to ensure global solvability of the transport equation. In this
guise our method clearly generalizes to many other settings. Details will
appear in [7].
We would like to conclude by two generalizations of the preceding

construction. In the case of a multidimensional analytic integrable hamil-
tonian the preceding proof will apply and give a construction of quasi
modes associated to invariant tori. Using the more general theory of
Hermite distributions [2], a similar construction is possible for stable

periodic trajectories of (non-integrable) multidimensional hamiltonians.
Both cases will be presented in [7].
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