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ABSTRACT. — We present a construction of semi-classical vectors
satisfying the Schrédinger equations modulo #%. These vectors have
nice regular properties, in particular they don’t have turning points. An
application is given to the calculation of matrix elements. The present
work is meant as an introduction to a more general theory which is
announced.

ResuMmE. — Nous présentons une construction de vecteurs semi-clas-
siques satisfaisant I’équation de Schrodinger modulo #”. Ces vecteurs ont
de bonnes propriétés de régularité et en particulier n’ont pas de points
tournants. Nous donnons une application au calcul des éléments de
matrice. Ce travail est une introduction a une théorie plus générale.
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1. INTRODUCTION

The theory of semi-classical approximations of eigenstates of self-adjoint
operators has a long history in quantum mechanics, since the WKB
approximation goes back to its early days ([10], [11]). As it is well known,
a defect of the WKB wave function is that it possesses singularities at the
so-called “turning points”. A formulation of WKB due to Voros [11]
avoids this “caustic” problem, by representing locally the eigenfunction in
Bargman space in a neighborhood of the corresponding classical trajectory.
However this approximation is not defined globally and so doesn’t belong
to the Hilbert space where the spectral problem is posed.

The goal of this paper is to construct semi-classical approximations of
eigenstates having the property that they belong to the Hilbert space where
the operator acts, and to its domain as well (in fact they are perfectly
smooth functions). Although a more general theory of this construction
is available, (see [7]), here we want to concentrate on the very simple case
of a one dimensional differential operator with a polynomial symbol. In
this case everything can be computed explicitly and, we hope, physically,
avoiding the microlocal machinery needed in the general case. In the last
section we will indicate in what sense the present paper is a special case
of a general theory, and elaborate on the geometric background of the
construction.

The ideas of this paper can be summarized as follows. Let us consider
a pseudo-differential operator a(x, AD,) on L?(R), with symbol a(x, &)
analytic in both x and £&. We would like to find, for every N, numbers Ey
and vectors Y such that

“(a(x, th)_EN)‘I’N”Lz(R)écNhNH M

for some constant Cy and for infinitely-many values of # having zero as
a cluster point. Ey and {y are allowed to depend on #, and should have
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A CONSTRUCTION OF QUASI-MODES USING COHERENT STATES 359

a good asymptotic behavior as # — 0. The first idea is to use coherent
states to construct Y. Recall that a coherent state —or wave packet—or
gaboret —is a vector Y, ), indexed by a point (x, &) of phase space, (best)
localized in phase space around (x, &), namely

1 i —i - -X
Ve 5y ()= T ol /2 h) =i €y o= (y—x)2 k) )
An easy computation shows that
| (@(x, RD)—a(x, E) Vs, || = O (') 3

However, (3) doesn’t give any spectral information: the mean level
spacing in one degree of freedom is O (h), and so the spectral prediction
of (3), namely that there is an eigenvalue within #'/? of E, is already
known to be true, trivially. Moreover, (3) is unsatisfactory because: (i) it
possesses a big degeneracy, namely all the y, . with a(x, §)=E are
associated to the same eigenvalue, and (ii) { V¢, (x, E)eRZ=T*(R)} is
not a basis of L?2(R) and in particular one cannot define an operator
which would be diagonal on { Y, ¢, }.

The idea is to go to next order in # and remove the degeneracy by
taking for Yy a suitable linear combination of the , ) with a(x, §)=E,
a combination which would satisfy (1) to order AN.

The main result is that this is indeed possible: to each connected
component I' of the energy surface Qg={(x, £), a(x, §)=E} and any
given N we can associate a vector Y, linear combination of V¥, ,, with
(x, £)eT, which satisfies (1) to order N for a suitable set of values of 4.
Thus  will be of the form

T
‘I/=J st B) e O o &yt “)

0
where (x(¢), £ (¢)) is a parametrization of I" as a trajectory of the Hamil-
tonian flow of a, and T is its period. The set & of values of # for
which the estimates (1) holds is determined by a condition of the Bohr-

Sommerfeld type. We will in fact discuss two Bohr-Sommerfeld conditions:
the classical one of the Physics literature, namely

f&dx=(n+1/2)h27t, neZ*, %)
r
and a second one which we will call the geometric BS condition,
Il‘,dx=nh21t, neZ*. 6)
r

Recall that the original meaning of (5), in the physics literature, is as a
rule for finding (approximate) values of the quantum energy levels: one
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360 T. PAUL AND A. URIBE

views (5) as a condition on the value of the energy of I', with A having its
physical value. The values of the energy picked up by (5) predict exactly
the spectrum of the harmonic oscillator. In general, as is well-known, the
prediction is accurate to order #2. For this, the presence of the famous 1/2
is necessary. .

In the present semi-classical context, we first fix a regular trajectory I'
arbitrarily, and view both (5) and (6) as defining the set of values of # for
which our estimates will hold. When dealing with the geometric BS
condition, (6), one has to make a correction of order # to the energy of
the trajectory: we will prove that one must take

E1=E+%h, )

where E is the energy of I' and T is its period. No such correction is
necessary if # is determined by the physical BS condition, (5).

About the construction of s, one can distinguish two issues: the determi-
nation of the amplitude s (which will be a symbol in 1/#) and of the phase,
/. in the ansatz (4). One should notice that in the expression (2) for the
coherent states one has tacitly chosen a phase for them: multiplying the
right-hand side of (2) by a complex number of modulus one would not
change its localization properties. The choice of f [see (12)] will be explai-
ned in paragraph 5 in terms of geometric quantization. Briefly, the space
that labels the coherent states with all possible choices of phases is not
the plane, it is the pre-quantum circle bundle n: G — R? of the plane. [The
choice (2) corresponds to a canonical trivializing global section R? — Gl
Our construction should be thought of as taking place up on G, which is
a “periodic” version of the Heisenberg group. The meaning of the
integral (4) is as a linear combination of the coherent states along a hori-
zontal lift of the trajectory T'. The geometric BS condition is that such a
horizontal lift be closed. Actually the amplitude s must satisfy certain
transport equations that can be solved on sections of the Maslov line
bundle of the horizontal lift of I', which is to say, on the space of anti-
periodic functions on this horizontal lift.

In section 2 we state the main results and prove them in section 3.
Section 4 is devoted to a result on the classical limit of matrix elements
of an observable and in section 5 we explain the link between our construc-
tion and more geometrical objects.

2. THE MAIN RESULTS

We now turn to a precise statement of the main results. Let a(x, #D,)
be a pseudo-differential operator with Weyl symbol a(x, £). Although
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there are several classes of symbols ([9], [8]) for which the results of this
section -hold, for simplicity we will concentrate here on the case where
a(x, £) is a real polynomial in (x, &). In this case a(x, hD,)is a differential
operator with polynomial coefficients, obtained by the Weyl rule: it is the
operator a(x, 1 D,) obtained from the polynomial a(x, £) by symmetriza-
tion ordering in x and A D,. We suppose that a(x,AD,) is self-adjoint and
has discrete spectrum.
We denote by @, the Hamilton flow associated to a(x, &):

d: (xo, o) = (x (1), £(1)), ®
with
. Oa . da
t)= —, )= — —
x(2) ot & P
x(0)=xp,  E(0)=E.
Since we are in one dimensional the flow is integrable and each regular

trajectory is periodic and fills up a connected component of the surface
energy

)

Q={(x, &), alx, §)=E}. (10)
Let T such a trajectory with period T, and let
oa=1/2(&dx—xdt) 11)

be a potential 1-form on R?=T*(R), so that —du is the symplectic form
on T* (R). To each (x, &) we associate the vector of L?(R) defined by
equation (2). To I' and to a smooth function s(7) of a real variable, anti-
periodic of period T [that is s (1+ T)= —s(#)] we associate the vector

. 1 T ..

\I’r, s = WJO S (t) et Io ((x€ —x&)/2 ) dx \le .50 dt (12)
where (x(?), & (¢)) is a parametrization of I' as a trajectory of the Hamil-
tonian flow of a. This means that we choose once and for all an origin
in I' (Changing the origin simply multiplies our quasimode by a constant).
The choice of this particular linear combination of coherent states has
several motivations in terms of geometrical considerations exposed in [7].
Another motivation comes from the propagation of coherent states as
shown in Hagedorn [3] and Litteljohn [6]: - , is the mean of the semiclass-
ical evolution of a coherent state pined on I', conveniently weighted.

Remarks. — (1) The fact that s(¢) has to be T anti-periodic is going to
become clear later on, and is related to the metaplectic representation [s (¢)
depends on # as well]. (2) The phase factor inside the integral is crucial
to the construction. Its geometry will be examined in paragraph 5.

Vol. 59, n° 4-1993.



362 T. PAUL AND A. URIBE

THEOREM 2.1. — With the previous assumptions, let T be a regular
trajectory of energy E, period T, “action” A=';—J (Edx—xdE) and flow
r

(x(®), E(1)), te[0, T]. Then there exist a sequence of numbers (c,) and a
sequence of smooth T antiperiodic functions, («, (1)), such that, if we let

N
Ey(h)=E+ Z c h*
n=1
and
N
sn()=3 o (A,
k=0

Sor each NeN, N2 1, there exists Cy>0 such that Sfor all h small enough
and of the form

h= —A—, e N* (13)
2n(n+1/2)
one has
[ Ve, s ll=1+0®) (14)
and
| (@ (e, hD,) — Ex (W) Wr, o [[SC AN 15)
Moreover

¢;=0 so E;=E
and (16)

o (1) =50 (1) = /ﬁ(aé(r)—i&m)

[in (16) the standard branch of the square root is implied).
An easy (and standard) consequence of Theorem 1 is:

COROLLARY 2.2. — With the same hypothesis, there exists eigenvalues
Mh) of a(x, hD,) satisfying, for each N and all h of the form (13)

|A(h)—Ex(h) |SCyhAN*L.
Moreover, if there exists a constant y such that
o(a(x, ADY))N[E—vh, E+yh]

has only simple eigenvalues, where o(a(x, hD,)) is the spectrum of
a(x, hD,), then, if \, is the eigenvector of eigenvalue A, we have

VN, 3Dy, [[Vr o~ Vn|[SDyAN*L (17

Annales de I'Institut Henri Poincaré - Physique théorique
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Remarks. — 1. The example of the harmonic oscillator shows that (13)
is in fact necessary; it is related to the Bohr-Sommerfeld quantization
condition which says that the semi-classical eigenvalues are the energies E
satisfying

A=j Edx=(n+1/2)h.
T of energy E

2. The condition of non degeneracy in the Corollary is necessary and
corresponds to having only one connected component I' on Qg. Otherwise,
as well known, the eigenvector may be a linear combination of Y, with
I, c Qg
h?D2+x?

3. A simple computation shows that, if a(x, AD,)= + (the

harmonic oscillator), the corresponding approximation Y, is in fact
exact.

Working with the geometric Bohr-Sommerfeld condition, (6), the result
is the following:

THEOREM 2.3. — In the statement of the previous theorem we can replace
“anti-periodic” by “periodic”, and (13) by
A

h= ——, neN* (18)
2nn

and the conclusions (14) and (15) still hold. The formulae (16) should be
replaced with

= s0 E1=E+hE,
T

i
T
and (19)

ao(t)=so(z)=e""“,/ﬁo&(z)—ié(m

3. PROOF OF THEOREM 2.1

3.1 Bargman space and preliminaries

Since the proof is going to take place in the Bargman space, we first
briefly recall some basic facts about it (see [1]). Bargman space, B, arises
when one introduces a complex polarization on T* R=R?; our normaliza-
tion is

z= %(x+i£_,). (20)

Vol. 59, n° 4-1993.



364 T. PAUL AND A. URIBE

B is defined as:
B= { g(z, 2)=e~ M £(2), with f entire analytic and

j | g(z, 2)|*dzdz< +oo}.
c

B is a Hilbert space with reproducing kernel, which means that there
exists a family of vectors p,e B, indexed by ze C, such that

VgeB, g(z, 5)=fpz(2')g(2', Z)dz dz'. 2n
Explicitly
1 5 .
po(2)= —eF ez 20 P, (22)

There is a very natural relationship between the p, and the coherent states
V,, ; defined earlier, given by:

LeMMA 3.1. — The map U:L*(R) - B defined by the integral kernel

1 2442 5 5
A - = o=z +y2+2V2zy+zz)2 h)
@) \/ﬁ (mh)34 ’ ’ ’

namely
U¥) @)= j Az, )V () dy, (23)

is a unitary map. Moreover,
U= /ahp, (24)

where z and (x, &) are related by (20).
For the proof of this see the original paper by Bargman [1]. Another
well known “‘basic” fact about coherent states and Weyl symbols is:

LemMmA 3.2. — Let a(x, hD,) be as in the hypothesis of Theorem 1,
namely given by a polynomial Weyl symbol. Then

(‘I’xz,&z’ a(x’h Dx) \lel,gl)
+z, z,—1z, -
=1th|:e‘("/2"’?1"=za<22 2y Zl)]pzl(zz, 7 (@5

NN
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Proof. — First note that:
Ua(x, hD)U! p., (22, z,)= e Uz1122h) g=(z; 1220 b(Z,, 2,),

b being analytic in z, and z,. We first compute the diagonal term of b,

namely: B "
nhb(zy, z)=e* Wy, o a(x, ADY Wy, ¢,)-

A direct computation gives [2],

_ _ (z4z, z—1z,
b(zy, z;)=e~ "V %, %, a( 1 1 >

NN
We obtain b(z,, z,) by analytic continuation in z,. O

Remarks. — (i) The operator e~ ®2 %, %, makes sense when applied to
a polynomial.
(ii) The function

h(z, z‘)=a< (26)

z+z z—z
\/5 ’ \/El
is nothing but the Hamiltonian a(x, §) written in complex coordinates.
Since a was assumed to be a polynomial, 4 has a unique extension to a
function A (z,, z,) of two complex variables, holomorphic in the first and
anti-holomorphic in the second. This is the function to which the operator
e~ ®2%, %, is being applied.
To prove our Theorem we need to estimate

” a (xs h Dx)— EN) \Ill", SN ”L2 (R)= ” U (a (x’ h Dx)_ EN) U—l U‘I’F, SN ”B (27)

By the previous formulae

1
U\IIF,SN:— i:J\

0

T t ..
sy ()€ Jo (=5 02 tyas P dt

which, since z (£)=(x (£)+i& (¢))/ \/Z equals

1T j‘z s oo
= T sy () e o EEm=z I d Pz dt (28)

0

We will obtain the estimate of (27) from a pointwise estimate of
' {U(a(x’ th)—EN)U——l (U\VF,SN) } (Zl) "
Let us define

I(z,):=U(a(x, iD,) = Eq) U™ U, (2)). (29

Vol. 59, n° 4-1993.
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Then one computes:

1/4 T o
I(Zl)=(ﬂ> ! sN(t)e'j:)((Z?—zz)/z By dr

2/ STl
nh\Y* 1
><U(a(x,th)—ENw-‘p,(,,<z,)dt=(_> R

2 \/T
T - -
xj (e—(h/Z)a;(,,azl<a<Zl +Z(t)’ Zy —Z_(t) _EN SN(t)e—ﬂ)((zz*—z';)/zh)dT
0 \/z \/21‘

Xp,(zy)dt

which can finally be written as

e~ Uz11%2h)

)" e ey

T
f (A(zy, 2()) —Ep) sn (0)
0

X (e'ro (zZ-z2)/2 ) ‘") el z(e)fh ez 12/2 h) dt (30)
where
Az, z‘(t))=e-(h/2)a;(,,a,1a<21 +z(2) Zl—z(t)>

\/i ’ ﬁi
h 0*h

=h(z,, Z_(Z))—E 5 aZ_(zl, z(O)+ . ..

This integral is the object we must study. The proof of our Theorem
consists in estimating I(z,) asymptotically by the (complex) stationary
phase method [4], and showing that for a precise choice of ay and E,
I(z,) can be made of order O (AN*'). Let’s begin by finding the critical
points of the phase appearing in (30), which is

(¢, z1)=—£@dr+zlz‘(t)—i(_’.)-2@—zl—jl 31)

where z, is regarded as a parameter. We get:

L ) (32)
ot

. s X
Since z=

—i&
2

and T is a regular trajectory (and so x and & do not

vanish simultaneously), Z#0. Hence the phase is stationary precisely for ¢
such that z, =z(#). Accordingly, we will break the analysis in the two
cases: z, on I' or not. Stationary phase for z, e I" will dictate what the o,

Annales de I'Institut Henri Poincaré - Physique théorique
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and ¢, should be. The main difficulty of the proof is in dealing with the
case z, ¢ I': for each such z, I(z,) is rapidly decreasing but not uniformly
as z, approaches I'. We will deal with that case in paragraph 3.4; we now
look at the case z, €I’

3.2. Estimates on I'.

Let us first take z, €I'; then there is a critical point at t=¢, such that
z(t,)=z,. Moreover

o ; 27— 27
S8t z)=[E <0 and WI’Z‘):_L =

dt

is purely imaginary.
LeEMMA 3.3. — There exist coefficients B, (t,, z,) such that (30) is equal
to

e—(lz1 122 N
_ 1 Q2n h)1/4 ~ j‘ (25 -27]2 hy du I: ik t :l 33
\/T IZ(tl)l kg,l Bi (11, z1) (33)

modulo WN*1, uniformly on z, eT. Moreover
oa, z(t
By, 2 1)_ (1) - ( ( % +1C1)°‘0(I1) (34)
22(t1

Proof. — The proof is a direct application of [4] Theorem 7.7.5. The
same theorem gives explicit formulas for the coefficients B,. For example,
the coefficient of #° is

((2 25 ) )

equal to zero automatically in the present case when z, eI". Hence the
sum in (33) indeed starts with k=1. A more involved calculation, which
we will omit, proves (34). O

More generally, computing the coefficients given by the stationary phase
method and re-ordering according to increasing powers of A, one finds
that the general form of B, (¢,, z,) is

Bt 2= T80 = Zo g () (1) 3)
ot 2z
where g, (¢,) is a smooth function of a;_;,c; with 1 <j<k—1. We will use
this fact in a moment.
Now the o; and ¢; in our main Theorems are obtained by solving the
equations

Bi (21, z,)=0, k=1,2, ... (36)

Vol. 59, n® 4-1993.



368 T. PAUL AND A. URIBE
and imposing the appropriate periodicity condition on the ;. Solving
By (1, 2,)=0 gives, by (34),
Ao (t1)=\/%€'m1 (37
up to a multiplicative constant.
Remarks. — (i) If we choose ¢, =0, a, is T-antiperiodic,
(ii) If we choose ¢, = %, then o, is T-periodic.

For general k, equations (35) and (36) and the method of variation of
parameters give that

Sy 1 ()=t (1) [tck - J &) ds]. (38)
0 % (5)
If we choose
_1 T8 (s)
Ck T L %) ds (39)

then, arguing by induction, (38) is a periodic (resp. anti-periodic) function
<= of t if a, is periodic (resp. anti-periodic).

In conclusion, in this subsection we have proved the existence of the
o, ¢, with the desired periodicity properties, such that 1(z,) is O (AY) for
all N, uniformly on z, €T

3.3 The norm estimate

Next we prove the norm estimate (14). By definition,

1 1
2= —_—_—
”‘l,l", SN” (21ch)1/2 T

T T N
x f dtJ‘ dr' e 'f" (x& =x8)/2 by ae sn@Osn (@) Ve, e Ve ) (40)
0 0

which, by unitarity of U and (28), can be written as
B\121 (T T R
WenlP=(5) 5[ o [ ars@sncere ey, o,
0 ]

Introducing the expression (22) for the reproducing kernel, we finally
obtain

11
e, |1 =

Qnh)? T

T T —— j‘t S o
XJ dtj dt’ sy (1) sy (1) e v ez =z 2 Ry de
0 0

X g2 W W o=z ) 220 o=z 1228 (4])

Annales de I'Institut Henri Poincaré - Physique théorique
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We now apply the method of stationary phase to this integral, for small
h. The critical points of the phase are given by the equation z=1¢. A
straightforward calculation shows that this is a non-degenerate critical
manifold, and that the stationary phase method gives

2=lr INOF 414 0.,
lralP=2) o] ()

Since L
sx()=/Z(D)+0H),

we obtain the desired result (14). This calculation explains the perhaps
surprising normalizations appearing in the definition of Y .

3.4. Estimates near I'.

To obtain the norm estimate of Theorem 2.1, we need to estimate (30)
with z, ¢ . We begin by noticing that the analysis can be restricted to a
neighborhood Q of I': away from TI', I(z,) can be easily bounded (in
modulus) by

T
0
On can derive from this that
J |6 (z)) |* dz, dz, <C” e~ @D, 43)
c\Q

Thus we are left to estimate I(z,) in Q. We will work first under the
standard Bohr-Sommerfeld condition, and with ¢, =0; we will point out at
the end of this section how to change the argument to prove Theorem 2. 3.

As already noticed, for z, e Q\I fixed, (30) decreases rapidly with #
but not uniformly in z,, as z, approaches I'. We will however establish
the following key estimate:

THEOREM 3.4. — As h— 0 along the BS values and with z, €Q, one has
an asymptotic expansion of 1(z,) of the form

eV ‘21”"( Y "B, <z1)) (44)
k=0

(2 Tth)l/4 e—|21 12/2h

JT Q@)

with e @V and all the B, (z,) analytic functions of z,€Q, and Q a smooth
function of z, independent of h (equal to |z (t,)| if z, €T). The expansion is
uniform on z, €Q. Moreover:

a) If z,=z(t)eT,

I(z))~

Ty —.
eV G = ejol zzdufh

Vol. 59, n° 4-1993.



370 T. PAUL AND A. URIBE

and
Bk(zl)=Bk(t1’ ;).
, (weo- Lat)
) Re W(zl)—T <0, Vz,eQ.
) Re(W(zl)—%)=O if z;el.

As a consequence, if we pick the o, ¢, so that B, (,, z,)=0 for z, €T,
then B, must vanish on Q, by analyticity. By integration over Q this,
together with (43), gives the desired norm estimates.

The idea behind the proof of Theorem 3.4 consists of deforming the
contour of integration of (30) in order to “cath” a given z, as a critical
point of the phase. This can be done since:

PrROPOSITION 3.5. — Under the Bohr-Sommerfeld condition, (%), the
integral in the expression (30) for 1(z,), is the integral over T of an analytic
function defined in a neighborhood Q of T.

The analytic extension of the integrand is also an oscillatory function.
After proving Proposition 3.5, we will define suitable deformations of the
contour of integration and apply the method of complex stationary phase
to obtain the estimates. This way of using analyticity in a neighborhood
of I' to obtain the estimate is inspired by methods used by Voros [11].

Let us begin the proof of Proposition 3.5. Re-write the integral (30) in
the form

1 1

I(z))= W ﬁ

I'(zy), (45)

where I’ (zl)=JB (2, 1) e*® 20 g with

B(z,, )= [e["""z’ %2, %z ) (a ( at! :r/zj(t) , Z‘\;; ft) ) - EN)] sn(?)

and

t27—27 |z|2_ |z, |2

(i)(t, Zl)=_J\o ) dT+ZIZ_(t)“T >

T . _ |z, |?
=—| zzdttz;z(t)— ——. (46)
o 2
(45) can then be rewritten as

t _
r (z1)=f BEnD pezom gz
r z
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where, implicitly, 7=1(z,) is the inverse of the function Z(¢). In order to
obtain the analytic continuation of the integrand, we define a multi-valued
function S(z) as the solution of the equation

h(S'(z), 2)=E 47
whose derivative restricted to I is
S’ |r =z, (48)

where

h(z, E)=a<i-+—z_ Z—Z_)

J? ’ J2i
and E is the value of aon I'.

The function 4 is nothing but the symbol of a(x, AD,) on the complex
+ig and 7 x—1iE

. X . . . .
coordinates z= z= % while (47) is the Hamilton-Jacobi
equation defining a canonical transformation that would change 4 into a
function of z alone.

LemMa 3.6. — If T is a regular trajectory, the problem (47, 48) has a
unique (multi--valued) solution analytic in an annular neighborhood Q of T
The derivative G=S' is single-valued on Q and

JG(Z—)d(Z_)=iA, 49

1
where A= E_f € ds— xdt is the action of T.
r

Proof. — We first show that the equation
h(G(2), z)=E

has a unique single-valued analytic solution in an anular neighborhood of
I' and satisfying
G(Z)=z onT. (50)

G (z)=2z is obviously a solution on I' by definition of I'={z, h(z, Z)=E}.
Local existence and analyticity in a neighborhood of I is given by the
implicit function theorem, since
0 -
5—/1 (z, 2)=z#0  (given that T is regular).
z

Being equal to z on I', the solution is necessarily single-valued. To show
(49), use (50) plus the identity

zdz= %(d|z|2+i(<‘,dx—xd&,)). O
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Proof of Proposition 3.5. — Since
<%¢(t, zl))= —zitz, 2= —S' (D) i+z,3,
a primitive of G (z), S(z), can be chosen so that
(A Zl)=—S(Z_(t))+zlz_(t)—%. (51)

Moreover, since o, (£)= o, (£) %, (2),
sw()=_/Zay (1)
where ay, (t) is T-periodic. Writting

BGy, )= /Zg(z,, 2 (1), (52)
with

gz, z*(t)=|},[—(h/z)az1 | (a(ZI ;"/zi(t) ’ Z1\}§§t))_EN>] &'N @, (53)

and noting that, by the equations of motion

()= ‘;—”(z 0. 70y =25 Gy, 200,
z 0z

we see that we can write I’ as:

e—(S(z)+zlz (zq 21/2)/h) _
g( Z15 2 dz. (54)

JV9:h(S(2), 2)

From this expression we see that Proposition 3.5 will follow from the
following: :

Lemma 3.7. — If T satisfies the Bohr-Sommerfeld condition (13),
e~ @ +zyz—(zy 21/2)/h)
J0:h(E (3, D)

is a single-valued analytic function of z globally for z in a neighborhood
of T.

Proof. — The function S (z) is analytic in z, so it is enough to see that
e~ S @M

VIR (S (3), 2)

is a single-valued function. We see from (49) that, under the BS condition,

§S'(5dz=2ni<n+%)h, (56)

(55
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where 3gmeans integration over any contour homologous to I'. It follows

that, after z winds around once in the annulus Q, e~ ® @™ changes sign,
and once can see that the square root in (55) changes sign also, since
onT’ .
,h(S' (@), )=z

and the velocity vector z winds around the origin once as ¢ ranges from
zeroto T. O

This finishes the proof of Proposition 3.5. By the Cauchy formula we
obtain:

COROLLARY 3.8. — Under the Bohr-Sommerfeld condition, the integral
I' given by (54) doesn’t depend on the contour inside the neighborhood
defined by Lemma 1.

Having proved Proposition 3.5, we now define a suitable family of
deformations of T yielding contours for which I, defined as an integral
on this contour, will have a given z, as a critical point. Such deformations
will be given by a family of ODEs parametrized by z,. We first notice
that the function S’ has an inverse S'~! on Q:S'~! is analytic and single
valued on Q since it satisfies

h(z, S~ '(2))=E

on Q, and
S (2)=z
on I'. Let us now consider the equation
2 (D=h(z;, ST (@), 2 0)=z, (57)
where

pr a ’
hzy, z1)= ——,h (21, 21).
0z}
If z;el, z,(¢) is a trajectory of the original Hamiltonian flow, since
S'~(z,)=z; on I'. Consider now the curve:

L)=5""(z;(9) (38)

LemMma 3.9.
CO=h(S©,0) and z(0)=S"'(z,)
- Oh =
where h,(z, z')= 5—(2’ z"). Moreover, {(f) and z, (t) are both periodic flows
z

with the same period T as T.

Proof. — The first part follows easily from the chain rule. Since
h. (8" (©), 0) and h(z,, S'"' (z,)) are analytic functions in { and z,, they
induce analytic flows. In particular if ¢ (t, £ (0))={ (¢) by (58), then ¢ (T, -)
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is analytic in {(0). Moreover, ¢ (T, §)=C if LeT. By analyticity, (T, O)=C
on Q. The same argument is valid for z, (). O

Proof of Theorem 3.4. — Let us call T'; the curve defined by (58) for
0<¢<T. Then

I(zl)=j . (59)
ry

The fact that I(z,) has a critical point at t=¢, is by the definition of
2, (#). Conditions (b) and (c) follow from simple calculations. The impor-
tant fact is (44), which we obtain by applying the method of stationary
phase to the integral (59). We need to show: (i) analyticity of the
coefficients B, and (ii) uniformity on z; e Q. Both of these follow from the
method of stationary phase itself, and the fact that the flows z, (f) and
C(#) depend analytically on the initial condition z,. The coefficients P are
the result of applying differential operators with analytic coefficients to

g(z1, L) /b (S C ), L),

and so are analytic themselves. Uniformity on Q follows because the
constants appearing in the method of stationary phase are bounded in the
C® topology of the phase. Condition (a) follows from the fact that when
z, €I" (59) reduces to (30). O

Proof of Theorem 2.3. — Theorem 2.3 is proved in exactly the same
fashion, with the following minor changes. The geometric BS condition
translates into the fact that the exponential

e—(S(z‘)+z1 z—(zq4 2¢/2)/h)
is now a single valued analytic function of ze Q. As noticed in remark (ii)

following (37) and in the remarks following (38), choosing ¢, = :T;—'makes

the amplitude T periodic, and hence its analytic extension single-valued.
So, again, I(z,) is the contour integral of a single-valued analytic function
on Q, and the rest of the proof is identical. [

4. CLASSICAL LIMIT OF MATRIX ELEMENTS

In this section we are concerned by the following problem. Consider a
pseudo-differential operator of the form described before a(x, AD,). Its
symbol a(x, &) constitutes a one dimensional classical Hamiltonian; there-
fore, in a neighborhood of a regular trajectory, Q it possesses a system of
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action-angle variables: there exists a canonical transformation C
C: Q » R*xS!
(x, &) — (A, 9)

such that a(C™ ! (A, ¢))=a(A), a function independent of ¢. The results
of previous sections show that to each value of the action A of the form

A=(h+1/2)h
is associated an appropriate eigenvector localized precisely on the trajec-
tory of energy a(A).

Let us now consider another operator b(x, #D,). We would like to
compute semi-classically the following matrix elements:

Co,m= 0 b(x, ADIV,,) (60)

where ,, is the (normalized) eigenvector of a(x, #D,) of quantum number
n, concentrated on the trajectory of action A=(rn+1/2)h.

THEOREM 4.1. — Let a(x, hD,) and b(x, hD,) be as above and let
(A, @) be the action-angle variables of a(x, £). Let

(A, @)=a(A) and  B(A, 9)=b(C"'(A, 9)

the symbols of a(x, hD,) and b(x, hD,) expressed in the variables (A, ¢).
Let

BA @)= ——= T B (A) " (61)
T«

Vi

=; ik o
i \/EL,B(A’ ¢)e*?do.

where

Then, under the hypothesis of Corollary 2.2,

| (s b (x, AD)V,) = B, -, (A) | = O () (62)
as n, m — oo with |m—n| bounded and h= —A—
h+12

This theorem says that, in the classical limit, the matrix elements C, ,,
tend to the Fourier coefficients on the symbol of b(x, #D,) expressed on
the action-angle variables of the symbol of a(x, #D,).

The following is a small variation of Theorem 2:

THEOREM 4.2. — C, =V, b(x, hD,)V,,) has an asymptotic expansion
of the form:

M 8

Bl_ hl
Onm

4
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as (n, m) tend to infinity as in the previous theorem all B._, computable in

terms of B = —— | B(A, p)et=m dg,
/21 Js,
We will sketch the proof. Since we are under the hypothesis of
Corollary 2.2, the eigenvectors V¥, can be approximated by a vector of
the form - ; given by (12) with s given by (16), namely

x()—ik(z)

a ()= [P0

\/?
with  (x(7), £(r)) is the flow on the trajectory I satisfying
j xdé=(n+1/2)h. The same is valid for V,, with o (5)= IL;é(t),
r

(x' (1), & (1)) being the flow on I of action (m+1/2)h. Then C, ,, is
expressed, using Lemma 3.2 as an integral of the form:

© =J f a@O@()b (1, )es 07 O g=1:0 122
n,m
z(t)elJz' (1)eI”
L o _ . _
X .. .e_(l 2 @122 h)e'jo(zz‘zz/z h)d"_.“t' (z'z’—z' z'[2 hydv’ dtdt (63)

where

bt t')=e_ha’"’6’—'“"b z(t)+z_’(tr), z(t)—z_’(t,)).
’ 2 2i
By the same method used to prove Theorem 2.1, the left hand side of
(63) can be replaced by an integral of the form

C = j J e 4 @M-F &M p (. 77) dzdz (64)
n,m e
rJrr \/ZZ

when zeT’, z’eI” and ¢ and ¢’ satisfy the Hamilton-Jacobi equations
associated to energies o ((n+ 1/2) #) for ¢ and a((m+1/2)#) for ¢', namely

h<d—¢(z), z)=oc((n+ 1/2)h)
dz

and

h(dd)l @) z')=cx((m+ 1/2)h). (65)
dz'

Since for # small enough I" and I are close, we can replace in (64) the
contour I'" by I". Moreover we get from (65) that

(22

dz dz

da do.
—=Mm-mh—+0H?.
)62 (n=m) 0A @)
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But Oh =z and—a— =w(A)=—_, where T is the period of I'. This means
0z 0A T
that
<d¢ d¢ )z (n—m)h%+0(h2).
Then:

C =f J W o= (4O =-RCEWD b (1 1) drdl + O (h?)

s m . .
z()elJz(@)el

The stationary phase method gives now, in the integration over dt’, a

critical point at ¢ defined by
9 (@))=0

i.e. t'=1. A little computation gives

T
cnm=lf G MO M7, 1) di+0 (h).
m=T),

To finish the proof notice that % = @, and that the first term of b (¢, t) is

b<2(1)+z_(t) z(z)—E(t))
Theorem 4.2 can be proved by the method of stationary phase, comput-

ing explicitly the terms in the expansion.

Remark. — In the case of the harmonic oscillator, the formula given
by Theorem 4.2 is well known in physics [5].

5. GEOMETRIC INTERPRETATION AND GENERALIZATIONS

In this section we show how our construction is related to the theory
of Hermite distribution as pointed out in the end of the introduction. This
will give a geometrical interpretation of the BS condition, and explain the
relationship of our construction to the Heisenberg group.

Let’s begin, in analogy with the previous considerations, with a closed
simple curv, v, = R2. Denote its action by A:

1
A=—J pdq—qdp.
2 YO

Let
P=R?xS!,
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(where S'=R/2nZ) be the trivial principal circle bundle endowed with
the connection form

T
a,=df+ » (P49~ qdp). (66)
Then P is a pre-quantum circle bundle of R? with the symplectic form
2
Q,=—curv(a,)= Xndqdp.

The choice of the connection form is so that the curve y, has a closed
horizontal lift, y g P.

The space P is a “reduced” version of the Heisenberg group,
H=R?xR.
More specifically, consider on H the group law
= Bg )@, ¢, )=p+p, q+q, t+1+(pq —qp)/2).

H — R? is the natural pre-quantum R bundle of (R?, dqdp) if we put on H
the connection form

a=dt+ %(pdq— qdp).

LEMMA 5.1. — P is the quotient of H by the subgroup of the center
Z,={(0,0,kA); keZ},
and the connection o, is the quotient of a.

Proof. — The quotient H/Z, only takes place in the R component;
since the variable 0 in (66) is 2n periodic, it is locally related to the
variable ¢ by

0= A L 67)

It is clear that the connection form, o,, of the quotient connection is a
multiple of a. By the condition a, (d,)=1, and (67), we get

2n 1
|\ dt+ = (pdg—qdp) )=a,. O
A( 2(pq qp)) A

We now recall a few well-known facts about the geometry and harmonic
analysis of the Heisenberg group (a good reference for this material is the
book by G. Folland [12]). The Heisenberg group is the boundary of a
strictly pseudoconvex domain (the Siegel upper half plane). Let us denote
by # the Bergman space of square-integrable functions on H which are
non-tangential boundary values of holomorphic functions on the Siegel
upper half plane. (H is an unimodular group with invariant measure
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dqdpdt.) The group H is represented on #, the representation being indu-
ced by the left action of H on the Siegel upper half plane. This representa-
tion is reducible: it is in fact a direct integral of the Heisenberg representa-

tions of H:
0

H = Hy, dh,
h=0
where ), is the only irreducible representation of Hj; where —id/ot
is represented by the operator “multiplication by #”. Notice that the
representations J#, with A=k2n/A, k=1, 2, ... are precisely those that
pass to the quotient P=H/Z,, and the quotient representations are faithful.
More precisely, P itself is the boundary of a strictly pseudoconvex

domain, 2, and its Bergman space is

Hp= @ H'2ua-

k=0
The domain 2 has two realizations: (i) as the quotient of the Siegel upper-
half plane by Z,, and (ii) as
D={(z, WeCXxGC; |z|ge I¥I*2},
The latter description of 2 is as the unit disk bundle of the dual of the
holomorphic hermitian line bundle over R*=C with curvature dgdp.
Our analysis is based on the micro-local structure of the Szegd projector:

I1: L2(P) - 4.
We will see that a fundamental geometric object associated with IT is the
following symplectic submanifold of T* P:

Z={(x, r(ay), xeP, r>0}.

THEOREM 5.2. — The wave-front set of the Schwartz kernel of I is equal
to

A
IxX={(o, 0); cel}.

More precisely, I1 is a Fourier integral operator of Hermite type associated
with this isotropic submanifold of T*P X T*P, in the sense of Boutet de
Monvel and Guillemin [13].

In [13], Boutet de Monvel and Guillemin construct a symbol calculus
of Fourier integral operators of Hermite type. Although we won’t go here
into this theory, we will indicate however how our results can be recast
into a symbolic calculation of Hermite distributions. Consider the Borel
sum of the states y, which we have defined:

o0
Q:=3 &%, .
k=1
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First we claim the following:

THEOREM 5.3. — O is a distribution of the form Il (u), where u is a
distribution on P conormal to a horizontal lift v of y,. The wave-front set
of © is contained in

C,:={(x, r(ay), xey, r>0}.

In fact, © is a Hermite distribution associated with the coisotropic
submanifold C.,.

Remark. — Let u be a distribution on P conormal to y. The fact that y
is horizontal means that the connection form a, is conormal to it, and
Theorem 5.2 implies that the projection IT (1) has wave-front set in C,.

Now for every value of # of the form A=k2mn/A, the Schrédinger
operator a(x, hD,) can be realized in s, Denote the resulting
operator A,. One can then form the “Borel sum” of these, i. e. the operator

a0
B=@® A,
k=1
acting on . Our second claim is that B is a zeroth order Toeplitz operator
on P, that is of the form

B=I1QII,

where Q is a zeroth order pseudodifferential operator on P which can be
chosen to commute with IT and with Dy. It is not hard to see that in
constructing our quasi-mode we are solving the equation

[B—E(Dy)](©)eC* (P), (68)

where E is an unknown real classical symbol of order zero. This equation
can be solved symbolically, by an iterative procedure. At every stage one
has to solve a transport equation along vy; the corrections to the energy
(which are the terms in the asymptotic expansion of E) are the zeroth
Fourier coefficients of the right-hand side of the equation; they must be
subtracted to ensure global solvability of the transport equation. In this
guise our method clearly generalizes to many other settings. Details will
appear in [7].

We would like to conclude by two generalizations of the preceding
construction. In the case of a multidimensional analytic integrable hamil-
tonian the preceding proof will apply and give a construction of quasi
modes associated to invariant tori. Using the more general theory of
Hermite distributions [2], a similar construction is possible for stable
periodic trajectories of (non-integrable) multidimensional hamiltonians.
Both cases will be presented in [7].
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