
ANNALES DE L’I. H. P., SECTION A

J. M. GONÇALVES RIBEIRO
Instability of symmetric stationary states for
some nonlinear Schrödinger equations with
an external magnetic field
Annales de l’I. H. P., section A, tome 54, no 4 (1991), p. 403-433
<http://www.numdam.org/item?id=AIHPA_1991__54_4_403_0>

© Gauthier-Villars, 1991, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression de ce
fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPA_1991__54_4_403_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


403

Instability of symmetric stationary states
for some nonlinear Schrödinger equations

with an external magnetic field

J. M. GONÇALVES RIBEIRO
Departamento de Matematica, Universidade Tecnica de Lisboa

Instituto Superior Tecnico, 1096 Lisboa Codex, Portugal

Ann. Inst. Henri Poincaré, ’

Vol. 54, n° 4, 1991, Physique theorique

ABSTRACT. - This work is concerned with instability properties
of solutions of the equation 
where iLA is the Schrodinger operator in the presence of a uniform
magnetic field, defined by the solenoidal vector potential

solution of the nonlinear elliptic
equation invariant by rotations around the
z-axis, and solving a certain variational problem. Put
}: = ~ e - ie C (x - ~ eZ) : 9, ç E R}. We prove that E is unstable by the flow of
the evolution equation, for some values of co, p. Moreover, the trajectories
used to exhibit instability are global and uniformly bounded.

RESUME. - Dans cet article on etudie l’instabilité des solutions
de 1’equation iLA est 1’ope-

rateur de Schrodinger avec un champ magnetique uniforme defini par Ie
potentiel vecteur solenoidal est une
solution de 1’equation elliptique non lineaire L~C+(DD2014!C~*~C=0; ce
I&#x3E; est invariant par rotations autour de l’axe des zz et est solution d’un
probleme variationnel. (x - ~ eZ) : 9, ç E R } . On prouve
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404 J. M. GON(;ALVES RIBEIRO

que X est instable pour 1’equation d’evolution lorsque co et p sont dans
des intervalles convenables. De plus, les trajectoires qui exhibent l’instabi-
lite sont globales et bornees uniformement.
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1. INTRODUCTION

1.1. In R3, we call the cylindric coordinates p, cp, z. A uniform magnetic
field along the z-axis, ~eR-{0}, can be derived from a simple
solenoidal vector potential A : B = rot A, div A = 0, A=~/2p~. In such a
magnetic field, the evolution of a spinless quantum particle is described
by the equation 

.

We associate to ( 1. 1 ) the nonlinear evolution equation

and the nonlinear elliptic problem

From the structure of the nonlinear term, looking for solutions to ( 1. 2)
of the type u (t, is equivalent to solving ( 1. 3). These uu are
called stationary state solutions of ( 1. 2).
We shall be concerned with instability properties of such stationary

states, particularly of those with cylindrical symmetry, 03A6 (p, z).
The Cauchy problem relative to ( 1. 2) was solved in [5] and the existence

and variational characterization of solutions to ( 1. 3), particularly the
symmetric ones, was established in [7]. Stability of stationary states was
proved in [5], for p  1 + 4/3, by adapting the variational argument in [6].

l’Institut Henri Poincaré - Physique theorique



405INSTABILITY OF SYMMETRIC STATIONARY STATES

In the absence of a magnetic field, instability of minimal action stationary
states (ground states) was proved, for /?~ 1 + 4/3, in two different

approaches: in [ 1 ], based on a finite time blow-up argument; in [ 13],
plotting the ground state action against the angular frequency and discuss-
ing the convexity of such function. Subsequently, this last approach flew
into an abstract frame for studying the stability of Hamiltonian systems
with symmetries, [9].
Our first attempt to prove instability followed the first approach: see

[8] for an explanation of the unsuccess. This paper originates from the
efforts to apply the Grillakis-Shatah-Strauss (GSS) formalism to the pre-
sent problem. As it will be seen, the formalism is not directly applicable
and some detours will be needed.

In the remainder of the Introduction, we shall detail some facts concern-
ing equations ( 1.1 )/( 1. 3) (subsections 1.2/ 1.10), state the main result

(subsection 1.11) and describe the obstacles to utilization of GSS theory
(subsection 1.12).

1.2. We now sketch an appropriate functional setting for the linear
evolution equation ( 1.1 ).

Put and consider the two following real Hilbert spaces:

[Integrations, except when otherwise specified, are over R3; ( , ) will stand
for the scalar product in L2.] Let be the dual space of HA. Taking
L2 as a pivot, one has L2 ~ H - 1. Now, define on L2 the operator

Put Hi =D(2) and endow it with the graph norm; one has HA.
Equality

is easily proved and from here one deduces that 5£ is a symmetric m-
accretive operator and that 1 is an isometry from HA onto HA 1. The
last fact leads us to define, on the operator ~ by

Vol. 54, n° 4-1991.



406 J. M. GONÇALVES RIBEIRO

( 1. 4) generalizes to

[( , ) will stand for the (HA 1, Hi) duality bracket] and one deduces that
~ still is a symmetric m-accretive operator. Last, apply the Hille-Yosida
Theorem to operators i ~, - i ~, i ~, - i ~ and solve the Cauchy problem
for equation ( 1.1 ):
Given there exists a unique u E C (R, HA 1 ) such

that and in C (R, HA 1). Such u verifies the two
conservation laws:

Last, if Uo E HA, then u E C (R, HÃ) U C 1 (R, L2) and the equation is verified
in C (R, L2).

1.3. Note that ( 1.1 ) is a Hamiltonian system. Indeed, define on HA the

kinetic-magnetic energy by E (v) =1 /2 This is a C~-functional,

the derivative of which at v is Now, write ( 1.1 ) as dt u= iE’ (u), and
the Hamiltonian character is evident, since multiplication by i is a skew-
symmetric operator.

This illuminates the conservation law ( 1. 5): if the trajectory were in
C1 (R, this is not the case for general should have:

1.4. Conservation law ( 1. 6) stems from a symmetry property (see [ 10]
for an abstract discussion):

Let L be a skew-symmetric bounded operator in HA, wich is also skew-
symmetric in L2, and let (T (8))0 e R be the uniformly continuous group of
isometries of HA generated by L. Suppose E is invariant by this group,

and define a functional on HA, called charge, by Q(~)=1/2(-~L~~).
This is a C~-functional, the derivative of wich at v is - iLv. Differentiation
of ( 1. 7) at e = 0 yields ( E’ (v), = 0 for all v, and charge is conserved
along a C1 (R, H1A)-trajectory:

Identify L with multiplication by i and . get the source ’ of conservation law
( 1. 6): conservation of the ’ L2-norrn comes from 

Annales de l’Institut Henri Poincaré - Physique theorique



407INSTABILITY OF SYMMETRIC STATIONARY STATES

1. 5. We now associate to ( 1.1 ) a nonlinear evolution equation. We want
conservation of energy and charge to hold; thus, we must keep the
Hamiltonian character and invariance by (T(8))~~. Take a C1-functional
on HA, the potential energy W, verifying

and define on HA the (global) energy or Hamiltonian by

The nonlinear evolution equation will be 
In this paper, we restrict to power-type nonlinearities,

where a is a real parameter and /? an admissible exponent; such W clearly
verifies ( 1. 8). To determine the admissible range for/?, the departure point
is inequality |~||03C8| ~ |0394A03C8| I a. e., for C). Consequence: if
v e HA, then v e H 1 ( ~H1 _ ~ ~ v ~ ~HA. From this and Sobolev embed-
dings, for q E [2,6], then for q E [6/5,2]. Now, b y
applying the usual measure-theoretical techniques, one easily proves that,
for/?e[l,5], W is a C1-functional (C2, if p &#x3E; 2), the derivative of wich at v
is a ~ ~p -1 v. And the nonlinear equation reads

1.6. For general nonlinearities, solving the Cauchy problem is not a
triviality. Resolution is based upon very subtle estimates on the inhomo-
geneous linear equation obtained by interpolation techniques. We refer the
reader to [5] and just state the result, adapted to power-type nonlinearities:

THEOREM 1.1. - Suppose p E [1, 5). Given there unique
T*e(0, 00] and a unique such that

M(0)=Mo, C([0,T*),H~’) and 
as t ~ T*, ifT*  00. For this u, conservation of energy and charge 

(The theorem goes on, discussing the case u0~H2A and dependance of
T*, u on uo. For our purposes, the present shortened version is sufficient.)

1.7. Since H is invariant by (T (6))e E R, looking for solutions to the
evolution equation of the type u (t, x)=T(-03C9t)03A6(x), where 03C9~R and

leads us to a stationary equation:

Such solutions are called stationary states.
To solve equation (1.9), one naturally considers two variational prob-

lems in HA:

Vol. 54, n° 4-1991.
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First, one tries to find a minimum point of the quadratic functional

subjected to the condition oo). If such a

minimum point exists, say w, it will verify in HA 1, for some real À. Then, making use of the different homogenities
of and one expects to determine  as a function

of  and, by varying u,, to give À the appropriate value. Details may be
found in [7], particularly how to determine the values of o for wich a

. minimizing sequence is bounded and how to circumvent the lack of

compactness in the embedding 1 by applying the concentration-
compactness method. Here we give the result:

THEOREM 1.2. - ~~~/?e(l,5), oe(-~,oo), (X E ( - 00, 0). Then,
for any ~e(0, oo), there exists the minimum the surface

~ v I p + 1= ~,. Moreover, there say such that every corresponding

minimum point w satisfies H. 
Secondly, one tries to find a minimum point of H (v) subjcted to the

condition I v ~2 = ~,, ~e(0, oo). If such a minimum point exists, say w, it

will verify w = ~, 2 w, in HA 1, for some real À. In this case,
one cannot argue by homogenity to adjust À, and the Lagrange multiplier
will remain undetermined. Again we refer to [7] and state the result:

THEOREM 1.3. - ae(-oo,0). Then, for any

a E (0, oo), there exists the minimum ofH (v) on the surface ~|v|2 = . Every
minimum satisfies w + = 0 in HA 1, for some real

1.8. We now consider stationary states with particular symmetry properties.
For an integer k, define a closed subspace of HA by

H1A,k = { v E ( p, cp, z) eik03C6 depends solely of (p, z)}.
We remark that is invariant by (T(6))e~ and that it is also invariant
by the flow of the evolution equation. Consequence: looking for solutions
to the evolution equation of the type u (t, where 03C9~R
and 03A6 E Hi, lp leads us to

where HA, k is the dual space of Hi, k. To solve equation ( 1.10) one argues
as in 1.7, everywhere replacing HA by Again we refer to [7] and

de l’Institut Henri Poincaré - Physique theorique



409INSTABILITY OF SYMMETRIC STATIONARY STATES

state the results:

THEOREM 1.4. - Fix an integer k, define rok = Min { -I ( b I, kb} and
suppose p E (1,5), ro E (0), oc E ( - oo, 0). Then, for any Jl E (o, (0), there

exists the minimum on the surface (in HA, k) 
a minimum point can be chosen so that, multiplied by becomes a

nonnegative function. Moreover, there is a Jl, say such that every
correponding minimum point w satisfies LA w w + a I w ~p -1 w = 0 in

THEOREM 1. 5. - Fix an integer k and suppose p E ( 1,1 + 4/3),
a E ( - oo, 0). Then, for any Jl E (o, 00), there exists the minimum of H (v) on

the surface (in HA, k) I v I2 =~; a minimum point can be chosen so that,
multiplied by becomes a nonnegative function. Every minimum point w
satisfies LA w + ro w + a I w Ip-1 w = o, in for some real roo .

Nonnegativity and the (eventually) wider range of 03C9 in Theorem 1.4
are consequences of the following facts: 

.

Note that such decomposition (E = K + something depending on b) will
possibly make no sense for general functions in HA: inclusion 
remains an open problem.

1.9. For 8e(0, oo), we call B (v, 8) the ball of HA centered at v
with radius 8; for any nonempty set Y in HA and any 03B4~(0, 00), 1/ (Y, 8)
is the 8-neighbourhood of Y in 1/ (Y, 8)= U B (v, 8). Y is stable by

t;6Y

the flow of the evolution equation iff, for any 1/ (Y, 8), there exists a
1/ (Y, 8) such that all the trajectories with initial value in

1/ (Y, E) are global and remain in 1/ (Y, 8) for all positive tt. Let u be a

periodic solution of the evolution equation and let (!) be the corresponding
closed orbit: ~={M(~):~e[0, oo) }. Orbital stability of u usually means
stability by the flow.
Now, fix a minimum point given by Theorem 1.2 (with or by

Theorem 1.3, say 1&#x3E;, and associate to the periodic solution 

Vol. 54, n° 4-1991.



410 J. M. GONÇALVES RIBEIRO

the closed orbit ~={T(-(o~)P:~e[0, oo)}. One expects orbital stability
of C to be discussed in terms of stability of O by the flow. But some
adaptation of the usual concept of orbital stability to the present situation
is needed, the reason being an additional symmetry property of H.

For y E R3, consider the mapping U (y) : L~ 3 ~ -~ ( y) . X v (x - y), com-
posed from the y-translation and the corresponding linear gauge
transformation. is a continuous unitary representation of the
Lie group (R3, +) into HA and L2, wich leaves H invariant. Define

n = { u ~ HA : v is a solution to the minimization problem solved 
From invariance, one has (We do not know whether equality
holds.) And one naturally presumes that orbital stability of 03A6 must be

thought in terms of stability by the flow. Indeed, it can be proved
(see [5] and references therein, particularly [6]) that, for a minimum point
C given by Theorem 1.3, n is stable by the flow. Of course, such theorem
does not imply 6? is unstable by the flow; but, in similar cases (absence of
magnetic field), examples can be given to show that 03A9-stability cannot be
strengthened into O-stability (see [6]).

1.10. What we have just said about stability of general stationary states
can also be said, mutatis mutandis, about stability of symmetric ones. In
order to remain in translations must be restricted to translations

along the z-axis; this gives no change of gauge, since A is invariant by
such translations. So, we define a one parameter strongly continuous
group (V (0)~ e R of isometries of HA, k and L2 by putting

For a fixed minimum point C given by Theorem 1.4 (with or by
Theorem 1.5, define

2 = { v E Hi, k : v is a solution to the minimization problem solved 

(Again we ignore wether equality holds in Then, it can be proved
(see [5]) that, for a minimum point 03A6 given by Theorem 1.5, S is stable

by the flow (restricted to We stress out that this stability refers to
perturbations in HÁ, k : 1/ (2, 8), 1/ (2, E) are to be understood as neigh-
bourhoods of  in HÃ, k. It is an open problem whether such k-symmetric
stationary states are stable (in some decent sense) for general perturbations.

1.11. We now come to the main result of this work. For a nonempty
set Y in H 1 and a we define the exit time by

Annales de l’Institut Henri Physique théorique



411INSTABILITY OF SYMMETRIC STATIONARY STATES

with T*, u given by Theorem 1.1; of course, the same concept applies with
an H1A,k in the place of HA.
THEOREM 1.6. - Refer to Theorem 1.4, and suppose k = 0, 0) E (0, 00),

p E [Puns’ 5), where puns = 1 + 4/3 + (4 , Jl 0 - 8)/9. With J.1 _ J.1ó, take a nonne-
gative minimum point Ð. Then, 1: is unstable by the flow and, to exhibit
instability, one can choose global and uniformly bounded trajectories. Preci-
sely: there exist a ~ (1:, õ) in HA, o and a sequence (uo, ~)~ in ~ (I:, b) such
that:

where u~ is the trajectory with initial value uo, ~. ~
Two remarks about Theorem 1.6:

First, the theorem states instability of E to perturbations in H 0’ hence
to general perturbations.

Last, (1. 11)-wich is more than uniform boundedness - implies a some-
how curious behaviour of the sequence for j large enough, u~ cannot
leave "Y (I:, õ) through an arbitrary point of its frontier - points wich "turn
away from the origin " only points the origin " are
allowed.

1.12. In [9], stability of stationary states is studied in an abstract setting.
To prove Theorem 1.6 within such setting, one needs a C 1 mapping from
a nonempty open interval I of R into Hi, 0’ 130) ~ Ð 0) E Hi, o such that
ÐO) is a nontrivial critical point of the action (with angular frequency M,
SJ and satisfies certain spectral conditions, namely its kernel is
spanned by i 03A603C9. Then, O-stability may be discussed in terms of convexity
of the real valued function 13 co -~ Sw E R.

In the absence of a magnetic the scaling and dilation technique
yields ÐO) and explicitly gives To have spanned by
i ~~, one must exclude translations [since al ~~, a2 ~w, 
when working in H1 (R3, C)] - and this leads to a priori restriction to
radial functions.

magnetic field is present, owing to the different homogenities
of - 0 and p2 to scaling, 0) and b change simultaneously, and scaling and
dilation does not yield 1&#x3E;0). On the other hand, a priori restriction to
radial functions is out of question and working in gives 

Thus, to prove Theorem 1.6, we give up discussion of stability in terms
of a real valued function of o and we shall look, directly, for a T tangent
to the constant charge surface and such ~0.

Vol. 54, n° 4-1991.
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Combined with minimization of S on a surface at 0, this will appear as
an advantageous way of handling spectralities.

1.13. This paper is organized as follows:
- In section 2, instability is proved under a Geometric Condition for

Instability (GCI) and assuming the existence of an Auxiliary Dynamical
System (ADS).
- In section 3, ADS is constructed under a Geometric Condition for

existence of ADS (GCADS) and a Regularity Condition (RC).
- In section 4, we establish GCI, GCADS (under a regularity restric-

tion).
- In section 5, regularity questions are solved.
- Last, in section 6, the proof comes to an end.
The work concludes with some remarks (section 7) and the references

(section 8).

2. INSTABILITY

2.1. We refer to Theorem 1.4, with the only restriction/?&#x3E; 2, fix 
and take a minimum point 1&#x3E;. We call ~ the constant charge surface at
~, ~ _ ~ v E Hi, k : Q (v) = Q (C)}, and call the constant potential energy

surface at C, W = v E HA, k : r v |p+1 = *k }. Action is defined (in the whole
of Hi) by According to the restriction on p, this is
a C2-functional; its derivative at v is S’ (v) = LA v + 03B1 | v |p-1 v + 03C9 v. Conse-
quently, C is a critical point of S : S’ (C) = 0. Moreover, C minimizes S on
~T:S(C)= Inf S (v).

We now suppose the two following conditions to hold:

THE GEOMETRIC CONDITION FOR INSTABILITY (GCI) - There is a

’P E HA, k tangent to 2 at 03A6 such that the Hessian of the action is

strictly negative along ~ : ~ S" (C) T, ’P &#x3E;  0.
[The duality bracket will be ( , ) whenever the context

allows to distinguish from the (HA 1, Hi) case].
THE AUXILIARY DYNAMICAL SYSTEM (ADS) - There exist a ~’ (E, E)

and a functional (X, s) --+ R such that:

nnales de Henri Poincaré - Physique theorique "
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Now, consider the vector field i ~’ : ~ (E, s)-~H~. From (2 . 2), the
corresponding Cauchy problem is solvable, thus giving rise to a dynamical
system: ADS. More precisely: given there exist a unique
oe(0,oo] ] and a unique 1/ ("£, E)) such that

0)=Mo, ~)=~’~((p(Mo, s)) in 1/ ("£, E)) and the
distance from cp (uo, s) to E tends to E as | s tends to cr, if cr  oo .

We remark that i ~’ is a uniformly Lipschitz field: there is a Ce(0, oo)
such whenever v 1, v2 are

the extreme points of a segment in 1/ ("£, s). Consequence : if 8ie(0, E),
then 1 for all E1) and some 03C31~(0, 00). We fix, once
for all, such E 1, 

Consider the function p: 1/ ("£, 7i)~~(~, E) just descri-
bed. From (2.2), by standard methods, one can prove some additional
regularity of (p: cp is C 1 as a function of the two arguments and cp is C2
in time. These properties will be essential in the sequel.
Two final remarks about ADS:

First, ADS is a Hamiltonian system, with Hamiltonian ~f; of course,
~f is conserved along the C1 (indeed, C2) Hi, k-valued trajectories of ADS.

Last, from (2.1), ADS posseses the same relevant symmetries of the
original dynamical system ( 1. 2). In particular, charge is conserved along
the (regular) trajectories of ADS.
We now state

THEOREM 2.1. - We refer to Theorem 1.4, with p &#x3E; 2,  
minimum point C. If GCI, ADS hold, then there HA, k

sequence (uo ,). in 1/ ("£, õ) such that:

where uj is the trajectory coming from
We break into several steps the proof of Theorem 2.1.

2.2. Proof of Theorem 2.1. 1st step. - We turn to the variation of the

action along the trajectories of ADS.
Given E1)’ the mapping (-Oi, s)) is C2. A

where P, Rare functionals defined (E, s) by

Vol. 54, n° 4-1991.
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R is a continuous functional and R(r)0. Consequence: there exist
~26(0,61), 026(0,01) such that

- - 

- B~o/~ B~.~~

Note that we used the fact p is continuous as a function of the two
arguments. 8

2.3. Proof of Theorem 2.1. We intersect the trajectories ofADS with ~r to get some uniformity in the LHS of inequality (2.3).Consider the mapping

This is a C1-mapping (we use the fact cp is C 1 as a function of the two
arguments) and its value at (0, 0) is u~. On the other hand, the s-partial
derivative at (w, 0) is if such a quantity were zero,
then P would be tangent to at 0; in this case, one would have
BS (I» B}I, T)~0 (otherwise, $ would not minimize S on this is a
contradiction with GCI; conclusion - the s-partial derivative at (0 0) is
not zero. Now, we can apply IFT: there exist E3 E (0, E2), 03C33~(0, 03C32) suchthat

Given u0~B(03A6, E3)’ apply (2.3) to the pair given by (2 4)and take into account that 03A6 minimizes S on W:

And from this and the symmetry invariances:

2.4. Proof of Theorem 2 .1. We use (2 . 5) to prove that
along some particular trajectories of (1.2), and as long as one remains in
’~ (~, E3)’ P is bounded away from zero.
Define

Suppose (In a latter step, it will be proved P is nonempty.) Take
an arbitrary t~[0, T * (J.!o, E3)) and apply (2.5) to the value at t of
the trajectory M of (1.2) coming from Mo: there exists an SE (- 0’3’ 0’3)

&#x26; Henri Poincaré - Physique théorique
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such that S(D)~S(M(~))+P(M(~))~. Since action is conserved along the
trajectories of (1. 2), this yields S (D) ~ S (uo) + P (u (t)) s, then

Conclusion, from continuity:

2.5. Proof of Theorem 2.1. 4th step. - We evaluate the variation of
Jf along the trajectories of (1.2).

Suppose - for heuristical purposes - the trajectories of ( 1. 2) to be

H1A,k-valued C1-functions. Then, as long as such trajectories remain in
i/’ (X, E), one has:

since charge is constant along the (regular) trajectories of ADS. That is:

To sum up: P measures the variation of S, H along the trajectories of
ADS; - P measures the variatzon of ~ along the trajectories of (1. .2).
We now need a rigorous derivation of (2 . 7). Take t E (o, 00),

WE C1 ([0, t], (:E, E)). One has:

By density, (2.8) remains valid for

In particular, (2 . 8) applies to the trajectory of ( 1. 2) coming from
uo e ~ (X, E), as long as it remains in ~ (~, E):

And, by applying the Fundamental Theorem of Calculus, one concludes
that ~f (u (t)) is C1 and that (2 . 7) holds.

2.6. Proof of Theorem 2.1. Sth step. - We prove that the trajectories
of ( 1. 2) coming from points in P do leave f (X, E3) in a finite time.
Take a u0~P and suppose that T * (uo, "j/ (I:, E3)) =00. From the pre-

vious steps, there exists oo) such that either ~~(M(~))~2014rt,

Vol. 54, n° 4-1991.
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or dr ~ (u (t)) &#x3E; r~, for oo). In both cases, oo as ~-~ oo .

But ~f is bounded on ~ (:E, E). Consequence: T* (uo, r (X, E3))  oo. 

2 . 7. Theorem 2 .1. 6th step. - We now prove that there are

points in &#x26; arbitrarily close to 0.
Follow the action along the trajectory of ADS which passes through D:

( - 0’ l’ s)). It is known that ~)),,=o==P(~)=~
One can then take 0’2) such that:

- S (~P (~~ s))  S (~)~ (2 . 9)
-p(I&#x3E;, f:3)’ aj. (2.10)
From (2 . 10), one can apply (2 . 3) with (p(C, s), where s E ( - 64, oj, in

the place of uo:

From (2 . 9), (2 .11 ), one concludes that for

s E ( - ~4, Combined with (2 . 9), (2.10), this gives (p(~, ~)e~,
0)U(0, o~). ~

2.8. Proof of Theorem 2.1. 7th step. - We prove that the trajectory of
( 1. 2) coming from (p(C, s), s sufficiently close to zero, s with the appro-
priate sign, is global and bounded.

We recall that the mapping ( - 0" l’ a 1 ) 3S ---+ II cp (C, is C 1 (indeed,

C2), its value at s = 0 is ~,k and its derivative at s = 0 is not zero. Then,

there is a 050(0, 0"4) such that cp (~, s) ‘p+ 1  ~,k if 0"5)’ where

P = -1 if the derivative is positive and P =1 otherwise. Fix an s such that
(3 s E (0, ~5), put uo = cp s), and consider the trajectory u of (1. 2) coming
from Mo.

Suppose that one for some T*(Mo)); then,

and, from conservation of the action and it would come
this would be a contradiction with minimization of S on

~ by C. Thus, by continuity, ~ u (t) I~+ 1  ~k , for any 

Combined with conservation of energy and charge, this gives
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This shows that u is a global and bounded trajectory.

2 . 9 ’ Proof of Theorem 2 .1. Conclusion. - Take " ’Y~ (E, ~) _ ’Y~ (E, ~3).
Given a positive " integer choose " an Sj such and .

where M~=(p(C, converges to 0. For every j, the trajectory u~
coming from is global and bounded; u~ does leave "~(L, ö)
in a finite time. Last, from (2.12)/(2.14):

2 .10. A theorem analogous to Theorem 2 .1 holds for general stationary
states given by Theorem 1. 2. One simply must replace everywhere 
J.1~, E by HA, J.1*, Q, respectively.

2.11. To prove E is unstable by the flow, the previously described
method applies to other situations. For instance, when 03A6 is a critical point
of S wich minimizes S locally on a surface ~. GCI, ADS stay unchanged;
minor modifications are needed in the proof, so that intersection of the
trajectories of ADS with ~’ takes place in an appropriate neighbourhood
of 0 in and the last part of the proof (globality, boundedness) is no
longer valid - here it is essential C to minimize S globally on 11/’. Unhappily,
the material is not available (to our knowledge) for such generalization:
we do not know any theorem to assert the existence of a critical point of
S wich minimizes S locally (nonglobally) on a surface ~.

2 .12. One also may interchange everywhere  and &#x3E; : the method still
works. This means the critical point C would maximize S and GCI
would change from concavity to convexity. Again we ignore the relevant
existence theorem.

2.13. Section 2 is inspired by [ 13], [9]. But, such as they can be found
there, the arguments are not applicable to our case: we could not rely on
some C1-trajectory, 13 co -~ 1&#x3E;0) E Hi, k, where S~ fulfills specific spectral
requirements (see 1.12); nor did we intend to prove O-instability, but
rather instability of a larger set (E).

3. THE AUXILIARY DYNAMICAL SYSTEM

3 .1. Call T’ (0) the infinitesimal generator of (T (8))8 E R and V’ (0) the
infinitesimal generator of (V (Ç)), E R, both groups taken as strongly conti-
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nuous groups of isometries of Hi, k~

Since (T(8))e~~ are also strongly continuous groups of isome-
tries of L2, the infinitesimal generators, in the L2 setting, are skew-
symetric ; particularly: _

(3 .1 ). (3 . 2) and the fact that the two groups commute on L2 will be used
throughout this section.
Take $~0, and and suppose the two following

conditions to hold:

REGULARITY CONDITION (RC). - ~eD((V’(0))~), ~eD(V’(0)). ~

GEOMETRIC CONDITION FOR EXISTENCE OF ADS (GCADS). - In L2, Z ~
is orthogonal to T’ (O) ~ and to V’ (0) 1&#x3E;. Besides, T"(0)C, V’ (0) I&#x3E; are
linearly independent..
The main result of section 3 is:

THEOREM 3 .1. - E HA, k, ~ ~ 0, E If RC, GCADS
hold, then there is an ADS in a neighbourhood ~(E, E)..
Note that variational characterization is irrelevant here. To prove

Theorem 3.1, one needs an (almost) evident proposition about the topo-
logy of ~:

3 . 2. PROPOSITION 3 . 2. - Put T1= R/(21t Z) (with the quotient topology),
define ~ by x : T1 xR3([9], and endow E with either
the topology of L2 or with that of Hi, k. Then, 3( is a homeomorphism from
the cylinder T1 x R onto ~.

Proof of Proposition 3 . 2. - Suppose 
From ~ ~ 0, one concludes first that Ç1 = Ç2’ then that [61] =[82]. Thus, ~
is one-to-one. Of course, x is continuous. To prove x -1 is continuous, it
is sufficient to prove continuity at 1&#x3E;. Given (8~)~, (çj)j such that

T (9 j) V (çj) I&#x3E; ~ $ in L2 as j  oo, one must prove that ([6~J, çj) -~ ([0], 0)
in T1 x R Put (with the usual topology); since
T1 x 81 is compact, one can additionally assume ([Oj, çj) -~ ([9*], 0161*) in
T 1 x 81 asj  oo , for some 8 * E R, ~ * E S 1. then T(9j)V (çj)I&#x3E; -~ 0
in D’ as j ~ ~ wich is a contradiction with 03A6~0. Thus, 03B6*~R and
T(ej)V(çj)I&#x3E;~T(9*)V(Ç*)I&#x3E; in L2 Combined with injectivity
of X, this gives [e*]==[0], ~=0. ~
We remark one only needs 1&#x3E;#0 to derive Proposition 3 . 2.
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3.3. Proof of Theorem 3.1. 1st step. - For v sufficiently close to 03A6

and (8, Q sufficiently close to (0, 0), we minimize the L2-distance from

Consider the mapping

(aZ ~, would be sufficient here), one

concludes that F is C2 and

In particular:

Since T’ 0 ~ V(0)0 are linearly independent, one has

One then applies IFT to the function x R x R 3 (v, e, 0 -+ (a2 F, a3 F)
(v, 6, to conclude that there exist E1, Ç1’ 816 (0, 1t)
such that:

Call G the function described in (3 . 6):

According to IFT, this is a C1-function and one has explicit (in terms of

82 F) expressions for Gi, G2. Moreover, according to (3 . 5), (3 . 6), and

arguing by convexity:
- Given 

G (v) minimizes F (v, 9, ~) on (-6i,ei)x(-~,~). ~ (3 . 7)

3.4. Proof of Theorem 3.1. 2nd step. - We turn to the variation of G

From continuity of x at 1&#x3E;:
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We apply (3 . 8) to the 81, Ç1 determined in the 1 st step of the proof
and obtain an 8(61, Ç1). Then, we choose an 82e(0,8i)n(0,s(e~i)/4),
where E. was determined in the 1 st step of the proof. We say that, if

To prove such assertion, we start from inequality

By assumption, the sum of the two first terms in the RHS is less than
3 ~2. On the other hand, from (3 . 7), the last term in the RHS is less than

E2. Thus, the LHS is less than s(9i,~). We now apply (3 . 8) and conclude
that, for some mEZ:

Last, consider the function

From the 1 st step, we know that is

the only zero of such function in ( - 81, 81 ) x (- Ç1’ Ç1). Thus, taking (3 .11 ),
(3.12) into account, to justify (3 . 9), (3.10) things are reduced to prove
that

This is an immediate consequence of the expressions for a2 F, 83 F and
the definition of G.

3.5. Proof of Theorem 3.1. 3rd step. - Definition of ~f.
Define B (C, E by

3 . 6. Proof of Theorem 3. 1. Conclusion. - Take E = E2. On ’Y~’ (E, E), ~
is, by construction, invariant by (T (8))e E R, (V (Ç))~ E R. From the definition
of H, the expressions (given by IFT) for Gi, G; and 
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(aZ ~, aZ ‘~ E L2 would be sufficient here), one deduces that

where Y2 are functionals defined on by

one concludes that for ~eB(D,8); of
course, the same conclusion holds for v E ~ (~, E). From orthogonality in
GCADS, Yi(0)=Y2(0)=0, hence i ~’ (~) _ ~. Last, one must check up
whether H’ is an Hi, k-valued C1-function with bounded derivative. This
is a consequence E D ((V (0))2), B{l E D (V’ (0)) (from what, in particu-
lar, and, concerning boundedeness, of (3 . 5). Verification
is easy but rather cumbersome, and is left to the reader.

3.7. Theorem 3. 1 is inspired by [9], [13], where ADS is constructed in
the case of a one paremeter group symmetry.

4. THE TWO GEOMETRIC CONDITIONS

4.1. To find tangent to 2 at C, we proceed by scaling and dilation:
for appropriate real yl, Y 2’ charge is constant along the trajectory

if this trajectory is regular (for instance,
I&#x3E; E ~2), then derivation at T== 1 yields the desired ~:

and investigate under what conditions GCI, GCADS hold.
The main result of section 4 is:

THEOREM 4 .1. - Suppose p E 5), 0) E (0, 00) and let nontrivial

nonnegative critical point of the action in Hi, o. Assume

and , (4.1). Then, GCI and , GCADS hold.
Note " that variational characterization of the critical point is immaterial.
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To derive Theorem 4 .1, one needs a Virial Theorem, i. e. a relation on
the kinetic, magnetic and potential energies of any critical point. On
Hi define a functional N by

One then has:

Note that, by applying S’ (C) = 0 to ~, one has:

So, there is a trivial relation on the energies and the charge. The nontrivial
point in the Virial Theorem is absence of charge.
We break into several steps the proofs of Theorems 4.1, 4 . 2.

4.2. Proof of Theorem 4.2. 1st step. - Regularity.
To prove the Virial Theorem, we must anticipate just a little bit of

regularity: we say 
Since C is a critical point of the action in Hi, o, one has

for ~r E ~ (R3, C) and B)/ invariant by rotations around the z-axis. Given
2n

ahy B)/i e ~ (R3, C), apply (4 . 3) first to B)/ (p, z) = (2 ~c)’ 1 
Jo 

B)/i (p, (p, z) dcp,

then to this function multiplied by i. Consequence:

Take a çE!Ø(R3,R). çD verifies the equation

In this work, we shall uniquely make use of the following regularity
property:

- For 00) and a nonnegative integer m,
let a tempered distribution f verify ( - 0 + 1 ) f E (R3, C).

(4 . 5)

In the RHS of (4 . 4), the two first terms are in L2. the same
holds for the third term. If p &#x3E; 3, a bootstrap argument based on (4 . 5)
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and Sobolev embeddings gives that the third term still is in L . [In this
argument, ç must change from step to step, owing to ( ~ (p -1 instead of
I ç D ~ in (4 . 4).] Thus, ~ ~ E H2 (R3, C)..

4.3. Proof of Theorem 4 . 2. Conclusion. - Apply S’(C)=0 to

where and W1’ W2 are
invariant by rotations around the z-axis:

We intend to let ~2 -+ I&#x3E; in Hi, o. The second term in (4 . 6) is good,
since 03A6 E but the first term needs some preparation:

Now, is the last term in (4. 7) that must be modified:

since 03A6~H2loc. Collecting together (4 . 6)/(4 . 8) and letting W 2 -+ 1&#x3E; in 
yields
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then

hence

Put ~iM=~(~~)j~/2, oo ), R), ~ equals 1 on

(0,1) and ç equals zero on (2, 00). Let j  00; by applying the Dominated
Convergence Theorem, (4 . 9) becomes 4 N (C) = O. M

4 . 4. Proof of Theorem 4 . 1. 1st step. - The trivial part.
A simple calculation gives that T is tangent to 2 at 1&#x3E;, hence that i 03A8 is

orthogonal to Orthogonality of to V’ (0) I&#x3E; comes from C
being real-valued. To prove that T’(0)D, V’ (0) I&#x3E; are linearly independent,
one may prove they are orthogonal and again this comes from C being
real-valued.
We now turn to the proof of ( S" (C) ~ B}I&#x3E;  O.

4 . 5. Proo. f ’ of Theorem 4 . 1. 2nd step. - We derive a formula for
(S"(C)~ ~F) in terms 
The mapping is a regular trajectory with speed

B}I and zero acceleration. Consequence:

We have:
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Differentiating twice at ’t = 0, and taking into account (in the differentiation
of the last term) that 03A6 is nonnegative, one then has:

Last, from the definition of ~F:

We now turn to simplification of the linear and quadratic terms in

4.6. Proof of Theorem 4.1 3rd step. - Simplification of the linear
terms.

Taking into account that C is a critical point of the action, one has:

4.7. Proof of Theorem 4. 1. 4th step. - Simplification of the quadratic
terms.

Take BfI1 E ~ (R 3, R), invariant by rotations around the z-axis. One
has:
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since C is a critical point of the action.
Let E q¿ R 3 R. Integration by parts gives:

In (4 13), let Bj!2 -4 11 in HA, o; apply the resulting expression to (4 .12)
and, once more, take into account that 11 is a critical point of the action.
This gives:

In (4.14), let W1 -+ in Hi, o; in the RHS of the resulting expres-
sion, one solely has to deal with linear terms in x . ~ ~; simplify 

these

terms as in 4. 6, and get

4.8. Proof of Theorem 4.1. Conclusion. - Collecting together (4.10),

(4. It), (4.15) yields:
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So, we have derived an expression f) in terms of the
energies and the charge of C. We now use (4. 2) to eliminate charge and
then the Virial Theorem to eliminate the potential energy. The final result
is:

where ~ = (5 -~)/(2~ - 2).
Last, we need a relation on the kinetic and magnetic energies of the

type Turn back to the Virial Theorem and (4 . 2);
elimination of the potential energy and 03C9&#x3E;0 give:

From (4 .16), (4 .17), one shall provided
1 + 3/a &#x3E;_ (2 + a), i. e. p 

4 . 9. The preceeding arguments will possibly generalize to HA, ~, 
Extension to Hji seems problematic: the argument is based on the splitting
of the kinetic-magnetic energy and, on HA, this is a dubious point.

5. REGULARITY

5.1. The main result of section 5 is

THEOREM 5 .1. - Suppose p E [2,5), o E (0, 00) and let 1&#x3E; be a nonnegative
critical point of the action in Then, a2 ~, aZ ~, 

_ 

...

To prove Theorem 5.1, we need a fact concerning a differential inequal-
ity :

PROPOSITION 5.2. - oo), let MeC~([0, oo), R), With 

satisfy M"(~)~PM(~, V~e[0, oo). Then:

We first prove Proposition 5 . 2 and then, in several steps, Theorem 5 .1.
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5 . 3 . Proof of Theorem 5 . 1. 1st sept. 2014 local regularity: 03A6 is C.
Turn back to (4.4),

and remember Then, the RHS is in L6. Apply (4 . 5):
Then, the RHS is in Apply again (4.5): DeW~, ~ arbitra-

rily large; is C 1. Now, the RHS is in arbitrarily large. Once
more (4 . 5) arbitrarily large; is C2.

Particularly:

It is known (see [5]) that C). Now, suppose that 03A6~H2A,
and take a sequence in D converging to 03A6 in HA; the sequence also
converges in L 00; hence, 03A6 will be in the closure of D in 
space of continuous functions wich tend to zero at infinity, Co (R3, R).
Thus, it is sufficient to prove 03A6~H2A. From definition, this means

Equivalently, 03A6~L2p. To prove this, we first con-
sider the complement of a cylindric neighbourhood of the z-axis and take
advantage of the symmetry of C.

Define a planar open set by Q1 = {(p, z) : p &#x3E; 1, One has:

So, taking C as a function of two variables, one 
Consequence:

From Holder’s Inequality:

And, from (5 . 5), (5 . 6) and E L2, we finally get
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We now turn to the cylindric neighbourhood of the z-axis.

Note that, since p2 ~, ~ - ~p are bounded for 0  p  1,
the first term in the RHS is in L2. Split (5.7) into a system of two
equations, i. e. consider f1, f2 uniquely determined by

and f1 ~ H2, hencef1ELq, 00]. Now, a

bootstrap argument based on (4.5) and Sobolev embeddings gives that

f2 E Lq, V q E [2, 00]. Particularly, ç 1&#x3E; E 

5 . 5. Proof of Theorem 5 . 1. Behaviour at infinity: exponen-
tial decay of the spherical average.

Integration of (5 . 4) on S (r) yields a second order differential equation

and taking (5 . 8) into account:
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We now apply Proposition 5 . 2: either u ( . + rl) decays exponentially to
zero, or it grows exponentially to infinity. The second term in the alterna-

tive cannot occur, since 0~oo. Thus

5.6. Proof of Theorem 5.1. 4th step. - For 03B3 ~ [0, 00), 
The departure " point is equation

Thus:

and integration on S (r) yields:

Multiplicate by 4 ~ r4 + 2Y and integrate on r from rl to r 2
 r2  oo); integrating by parts the two last terms gives:

Thus:

where C = C (a, C y). We let r 1 -+ 0 and then apply (5 . 9). Conclu-
sion : there are C CEO oo) such that, for any oo):
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Thus, it is sufficient to prove the existence of an increasing unbounded
sequence (r2, .). such that:

If such a sequence does not exist, we shall have, for r2 in some neighbour-
hood of oo :

This is contradictory with

Consequence: such a sequence does exist and E L 2..

5.7. Proof of Theorem 5.1. Conclusion. - It is known (see [5]) that
v ~ H2A iff:

Therefore, ~z03BD~H1A if Thus, it is sufficient to prove that

03A6,~z03A6,x.~03A6~H2A. We have already proved, 2nd step, that 03A6~H2A, hence
So, it is sufficient to prove that:

Let us prove that (5.11) is a consequence of (5.12). From the previous
step, one has Thus, to have (5 .11 ), it is sufficient
that V (x . V Ð) E L2. On the other hand, from the previous step and (5 .12),

Then, Particularly, and (5.11)
holds.
To sum up: regularity problems are reduced to proving (5.10), (5.12).
To compute directly, by classical derivation, one

needs C in C3. Come back to (5 . 3) and remember 
arbitrarily large; then, the RHS is in arbitrarily large (we make
use of ~2); arbitrarily is C3. Now:

and all the functions in the RHS’s are in L2.
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5 . 8. The preceeding arguments will possibly generalize to 

6. PROOF OF THE MAIN THEOREM.

CONCLUSION

Proof of Theorem 1 . 6. - Apply Theorem 5.1:

From Theorem 4 .1, ~ and ~=3/2C+jc.V~ verify GCI, GCADS. From
Theorem 3.1, there exists an ADS. Last, apply Theorem 2.1. ~

7. FINAL REMARKS

7.1. If there is no magnetic field, our variant of the GSS formalism
applies as well. We work, in H 1 (R3, C) and, by means of spherical
symmetrization, 03A6 is chosen, a as a radial (nonnegative, nonin-
creasing) function. We come to the conclusion that

is unstable by the flow, provided p E ( 1 + 4/3, 5). In this case, one has to
deal with a four paremeters group, but, owing to radiality and
absence of gauge transformations, construction of ADS is easy.

7 . 2. If there is no magnetic field, po =1 + 4/3 is optimal : for 
critical points given by the homologous of Theorem 1. 3 are 0396-stable (see
[6]). In the case of a magnetic field, we have different limit values for
p : p  1 + 4/3 for E-stability (see 1. 9); for E-instability. Let’s

explain why:
If there is no magnetic field, dilation and scaling yields the 03C9-variable

trajectory, the convexity/concavity of wich separates stability from instabil-
ity. In the case of a magnetic field, the 03C9-variable trajectory will certainly
still separate stability from instability. But such trajectory is not obtained
by scaling and dilation.
How can one get a trajectory 1&#x3E;00 with variable o and fixed b?
Will such trajectory yield an optimal p somewhere in ( 1 + 4/3, /?uns)? and

independent from b?
Will the optimal p depend on b, rather?
Will it exist (for fixed b) an optimal p at all?

Annales de l’Institut Poincaré - Physique theorique



433INSTABILITY OF SYMMETRIC STATIONARY STATES

[1] H. BERESTYCKI a4cnd T. CAZENAVE, Instabilité des états stationnaires dans les équations
de Schrödinger et de Klein-Gordon nonlinéaires, C.R. Acad. Sci. Paris, T. 293, 1981,
pp. 489-492.

[2] H. BERESTYCKI and P. L. LIONS, Nonlinear Scalar Field Equations. I, Arch. Rat. Mech.
Anal., Vol. 82, 1983, pp. 313-345.

[3] P. BLANCHARD, J. STUBBE and L. VASQUEZ, On the Stability of Solitary Waves for
Classical Scalar Fields, Ann. Inst. Henri-Poincaré, Phys. Théor., Vol. 47, 1987,
pp. 309-336.

[4] T. CAZENAVE, An Introduction to Nonlinear Schödinger Equations, Textos de Métodos
Matemáticos. No. 22, I.M.U.F.R.J., Rio de Janeiro, 1989.

[5] T. CAZENAVE and M. ESTEBAN, On the Stability of Stationary States for Nonlinear
Schrödinger Equations with an External Magnetic Field, Mat. Apl. Comp., Vol. 7,
1988, pp. 155-168.

[6] T. CAZENAVE and P. L. LIONS, Orbital Stability of Standing Waves for some Nonlinear
Schrödinger Equations, Comm. Math. Phys., Vol. 85, 1982, pp. 549-561.

[7] M. ESTEBAN and P. L. LIONS, Stationnary Solutions of Nonlinear Schrödinger Equations
with an External Magnetic Field. In Partial Differential Equations and the Calculus
of Variations, F. COLOMBINI et al. Eds., Birkhäuser, Boston, 1989, pp. 401-409.

[8] GONÇALVES RIBEIRO, Finite Time Blow-up for Some Nonlinear Schrödinger Equations
with an External Magnetic Field (to appear).

[9] M. GRILLAKIS, J. SHATAH and W. A. STRAUSS, Stability Theory of Solitary Waves in
the Presence of Symmetry. I, J. Funct. Anal., Vol. 74, 1987, pp. 160-197.

[10] P. OLVER, Applications of Lie Groups to Differential Equations, Springer, New York,
1986.

[11] J. SHATAH, Stable Standing Waves of Nonlinear Klein-Gordon Equations, Comm. Math.
Phys., Vol. 91, 1983, pp. 313-327.

[12] J. SHATAH, Unstable Ground States of Nonlinear Klein-Gordon Equations, Trans. Am.
Math. Soc., Vol. 290, 1985, pp. 701-710.

[13] J. SHATAH and W. A. STRAUSS, Instability of Nonlinear Bound States, Comm. Math.
Phys., Vol. 100, 1985, pp. 173-190.

[14] W. A. STRAUSS, Existence of Solitary Waves in Higher Dimensions, Comm. Math.
Phys., Vol. 55, 1977, pp. 149-162.

[15] J. STUBBE, Linear Stability Theory of Solitary Waves arising from Hamiltonian Systems
with Symmetry, Portug. Math., Vol. 46, 1989, pp. 17-32.

[16] M. WEINSTEIN, Liapounov Stability of Ground States of Nonlinear Dispersive Evolution
Equations, Comm. Pure Appl. Math., Vol. 39, 1968, pp. 51-67.

( Manuscript received April 11, 1990.)

Vol. 54, n° 4-1991.


