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ABSTRACT. — We comment on certain problems of integration over Lie
algebras and groups which arise naturally in the study of matrix models.
In particular we give a new simple derivation of a classical formula due
to Harish-Chandra, which was rediscovered by physicists as a mean of
solving models with two matrices or more.

REsuMmE. — Nous commentons certains problémes d’intégration sur les
algebres et les groupes de Lie qui apparaissent naturellement dans I’étude
des modéles de matrices. En particulier nous donnons une nouvelle dériva-
tion simple d’une formule classique due a Harish-Chandra, qui a été
redécouverte par les physiciens comme moyen de résoudre les modéles a
deux matrices ou plus.

Matrix models have attracted the attention of physicists for a variety
of reasons. Originally they were statistical models proposed and studied
by Wigner and others for the spectroscopy of heavy nuclei[l]. Later
particle physicists used them in the investigation of the large N limit of
QCD, also called planar limit[2] as the only Feynman graphs which
survive it are those that can be drawn on a plane. But soon they became
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a subject of interest of their own as it was discovered in [2] that the
perturbative expansion is really of topological nature, if one views a graph
as the spine of a simplicial decomposition of a surface. The contribution
of a graph is proportional to N* where y is the Euler characteristic of the
simplicial decomposition. In this way surfaces of arbitrary y participate
in the perturbative expansion. Powerful techniques were developed
([3], [4], [5]) to sum the contributions of all graphs of a given topology.

This then led to the conclusion that these models could be of some help
in understanding quantum gravity in two dimensions [6]. Two-dimensional
quantum gravity is a theory of fluctuating random surfaces. A convenient
way of regularizing it is to restrict the dynamical variables to a large but
finite number of points on a surface considered as the vertices of a
simplicial decomposition. A remarkable double limit scheme of the matrix
models was found [7], such that they exhibit a scaling behavior for all y.
This is achieved by simultaneously sending N to infinity and carefully
tuning the coupling constants. The resulting exponents agree with those
which were obtained [8] directly in the continuum.

At this point one should also mention related work by
mathematicians[9] who obtained information on the topology of the
moduli space of surfaces using matrix models computations. The idea is
that a suitable family of simplicial decompositions of surfaces gives rise
to a cell decomposition of Teichmiiller space. Then one reduces the
computation of the (virtual) Euler characteristic of moduli space to a
Feynman graph counting problem, which is solved by finding the appropri-
ate generating function, which turns out to be the partition function of a
matrix model.

The models are defined by the partition function:

Z=|T]dM,exp [-) Tr V(M) + Y B, Tr (M, M,)] (1)

where the M,, 1=<a=<r are N XN matrices, which are supposed to be
hermitian at first, and the integration is over VXV x ... XV (r factors)
where V is the real vector space of such matrices. The matrix of couplings
B.p is taken to be of the form:

Bis=BTa @)

with I', the incidence matrix of a graph I". We assume that the potential
V(M) is even:

V(M)=%M2+Z P o 3

K22 Nk—l

Now we come to the matrix integration problems we shall discuss in this
paper. Let us first consider the case r=1, B,,=0. We observe that due to
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invariance of the trace, Tr V(M) only depends on the eigenvalues A; of
M. If /(M) is an invariant function, f (UMU™Y)=f (M) for any unitary
matrix U,

(2 TC)N (N—-1)/2
def(M)——l_[—— H dh A (A f(A) C)]
12p=N
where A=diag(A,, ..., Ay) and
AN)= l_[ (¥ 7\'}') ®)

Applying (4) to f (M)=exp[—TrV(M)], one finds that Z is given up to a
numerical factor by:

lj du (L) A(A)? (6)
with
du(x) dhe V® 7
V()=- x2+ z B" SE A ®)
2 k22

Introduce the monic orthogonal polynomials P,(A) with respect to the
measure di(A), where n is the degree. Using the fact that A(A) is the
Vandermonde determinant, one shows that [4]

N-1
Zy=N! [] h, )
n=0
where 4, is the norm of P, (A):
h.FJdH MP, (W) (10)

The second integration problem occurs when one tries to evaluate (1) for
two matrices or more. Let us consider two matrices, say M; and M,, and
suppose that §,,=B#0. As before, one would like first of all to integrate
over the angular variables to deal with a problem involving only the
eigenvalues A, ; and A, ;, so that one must compute the integral:

I(M,, My; B)=de exp B Tr (M; UM, U™ (11)

where dU is the normalized Haar measure on the unitary group,
dU=1. Since dU is both left and right-invariant, one

has I(M,, M,; B)=I(A,, A,; B), where A; and A, are the diagonal
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matrices of eigenvalues of M, and M,. In [4] this integral was found to
be:
N-1
I(Ay, Ay B)=B~NN-112 H p! det (exp BAy ;25 )) 12)
p=1 A(A1)A(Az)
In this paper we will study the generalisation of (4) and (11) when one
replaces the unitary group by a compact simple Lie group G and the
antihermitian matrices iM by the Lie algebra ¥ of G. For that we have
to fix some notations first. Let %€ be the complexification of 4. Let Ad
be the adjoint representation of G on 4. Let { , ) be an invariant form
on %€ which is positive definite on i%. Let dg denote the normalized Haar
measure on G. Choose a Cartan subalgebra #C of 4€, let #=H#°N¥,
and choose a set of positive roots T, —ix#’. We identify s#°C with its dual
by means of { , ). To each aeX, we associate a¥ =2a/{a, o). These
are called coroots. The coroot lattice Q" is the lattice generated by the
coroots. Let P be the weight lattice, which is the dual of QY. Let W be
the Weyl group and m,, m,, ..., m, the exponents of W, with /=dim #
the rank of 4.
We introduce the analog of (5). For he #°C it is the polynomial:
A= ] <o, k). (13)

aeX

It is the infinitesimal version of Weyl’s denominator,
c(h)y=e <" J] (1—e i <> (14)

aeX

where as usual p denotes
1
p== Y a. (15)
The following generalisation of (4) is easily proved:

J dx f (x)=Const J dn A(h)? £ () (16)
9

H

where f (x) is any invariant function on ¥, i.e. f (Ad (g) x)=f (x) for any
g€G. There is a similar formula for class functions f'(g) on G:

J dg f (g)=Const j dto?(ilnt) £ (F) an
G H

with H=exp s the Cartan subgroup.
Formula (16) enables us to solve one-matrix models on any classical
Lie algebra 4. One finds

Zy=0hoh, ... hy_, (18)
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for ¥=so0(21) and
Zy_1=D'hihy.. hy_ . 19)

for ¥=s0(2/+1). Here Z, is defined as in (6) but A given by (13). The
partition function for #=sp(2/) is the same as (19) up to a numerical
factor. To derive these results one uses the assumption that the potential
(3) is even, and the explicit structure of roots systems[10]. One could use
(17) to solve the one-matrix models on groups, as was done for the unitary
group in[11].

The formula which is really interesting to generalise is (11). The answer
is given as follows. Let x,, x,€is#. Then

J dg exp B<x;, Ad(g)x, )
G
S e(ned xure)

weW

A(x;)A(xy)
where € (w)=(—1)'™, I(w)=1length of w expressed as a product of reflec-
tions. Notice that

=p-@mo-2 A (p) (20)

|of?
A= T 2= TTm! @1)
aecX 4 2 i=1
and that (20) is unchanged if we simultaneously multiply { , ) by a factor
a and divide B by a. Therefore we can evaluate (21) by setting |ay |>=2,

2\ #short roots !
A(p)=('—°‘sl—> [1m! @)
i=1

o |2

and put it back into (20) without having to choose a normalisation for
{ , . (Here o and ag denote long and short roots.)

Before embarking on our short proof of (20), we would like to make a
few remarks. Formula (20) is due to Harish-Chandra[12] who proved it
by studying the invariant differential operators on G. He never used
Weyl’s character formula in his proof, in fact (20) is an ingredient in the
derivation of the character formula based on harmonic analysis[13]. Our
proof uses the character formula, which can be established independently
in a purely algebraic way, together with elementary harmonic analysis on
G. As already mentioned before, in the particular case of unitary groups
the formula was rediscovered by one of us in collaboration with J.-
B. Zuber [4]. For a recent application in another context in physics see [15].

In more recent mathematical works, the L.h.s. of (20) is often expressed
as the integral over an orbit of the coadjoint representation. It is possible
to express the characters themselves as orbital integrals[14]. One can also
use the fact that the orbits in the coadjoint representation have a symplectic
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structure to prove (20) more directly: one computes the saddle-point
approximation to the integral, the presence of the symplectic structure
then implies that the approximation is in fact an exact computation.
See[16] and the references in[15].

Now we come to the proof of (20). We note that the integrands is
proportional to the Heat Kernel on i¥,

exp <—$|x1—Ad(g)x2|2> 23)

with B=1/z. For short times ¢, it doesn’t matter if we consider instead the
Heat Kernel on G, K (g, gg; "¢~ #) with g;=expix;, j=1,2. Tt turns out
that the latter integral is easy to compute. The evaluation of its short-
time limit then furnishes the result. Thus we need the expression for the
Heat Kernel on G, K (g, ). The set of all irreducible unitary representa-
tions of G is

P,=PN{xeif|{x,a)20,aeZ, }. (24)
More precisely, P, is the set of highest weights of these representations.

Denote by y, (g) and d, the character and the dimension of the representa-
tion corresponding to AeP_. Then

K(g, )= ) dyy.(g)e *"? (25)
AeP4
where
a=|r+p|*=|p|% (26)

Let us compute

F(g;, &2, t)=f dgK (g, 285 ¢ 0= Y %n@)r(gzHDe ¥ (27)
G

LePy

To obtain this result, substitute (25) in (27). It reduces to

d, J dg%.(8:287 ¢ =12 % (g2 ") (28)

which follows from the orthogonality relations for matrix elements (Peter-
Weyl theorem). Now recall the Weyl character formula:

o (e =Y1re ) (29)
o (x)
where xei # and
v, ()= ) e(w)e <@, (30)
weW
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We want to express (27) in terms of theta functions. We have

—cf2
Z e~ Vitp (X)) Vip, (= X3)
LePy

=el?%2 Y g(w) Y e (X =W o= IR 1202 (3])
weW LeP

since v, (x)=0 if the stabilizer of A in W is non-trivial. With the Poisson
summation formula we arrive at

Ip12t/2 I
el P 1712 5112 (2 /p)2 S ) ¥ el w DRIz (32)
o(x)o(—x2) wew Be2rQY

F(gl, 82> t):

where v is the index of Q¥ in P. This formula was also derived in [17]
for the study of the orbital theory of affine algebras. Now we take a short
time limit:

lim 4™ G F (€1, e'*2, g2 )=f (x,, X5, 1) (33)

e—>0
All terms in (32) with B#0 become negligible and we get:

o 3 et
f(xla xla t):.Ul/Z (—7> b
t A(x)A(xy)

To complete the proof we have to work out the precise relation between
K (g, 1) and the Heat Kernel on i%. As before we express K in terms of
theta functions:

K, 0= lim ¥ 7,(e%) (7w e o

(34

n—>021rePy
lpl2t2 ,1/2 12
= lim et o @n Z e(w) Z e~ x—ew @) +B12/2t (35
n-0 O(X)o(—enp) wew Be2nQ
Hence
) . . 12 (2 m/f)H?
lim SdlmGK(elsx, g2 t)= lim v ( Tc/) Z 8(w)e.—lx—nw(n)lzﬂt (36)
e—~0 n—>0 A(X)A(T'IP) weW
Thus we get

1/2 12
lim &4 G K (&%, g2 7)= o2 2n/0)! o %172t
b

e 0 t(dimG—l)/Z A (p) (37)

using the denominator formula v, (—in x/f)= o (—in x/t). Comparing (34)
and (37) we arrive at (20).
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