@article{AIHPA_1988__49_3_387_0,
author = {Sudarshan, E. C. G. and Imbo, Tom D. and Imbo, Chandni Shah},
title = {Topological and algebraic aspects of quantization : symmetries and statistics},
journal = {Annales de l'I.H.P. Physique th\'eorique},
pages = {387--396},
year = {1988},
publisher = {Gauthier-Villars},
volume = {49},
number = {3},
mrnumber = {988435},
language = {en},
url = {https://www.numdam.org/item/AIHPA_1988__49_3_387_0/}
}
TY - JOUR AU - Sudarshan, E. C. G. AU - Imbo, Tom D. AU - Imbo, Chandni Shah TI - Topological and algebraic aspects of quantization : symmetries and statistics JO - Annales de l'I.H.P. Physique théorique PY - 1988 SP - 387 EP - 396 VL - 49 IS - 3 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPA_1988__49_3_387_0/ LA - en ID - AIHPA_1988__49_3_387_0 ER -
%0 Journal Article %A Sudarshan, E. C. G. %A Imbo, Tom D. %A Imbo, Chandni Shah %T Topological and algebraic aspects of quantization : symmetries and statistics %J Annales de l'I.H.P. Physique théorique %D 1988 %P 387-396 %V 49 %N 3 %I Gauthier-Villars %U https://www.numdam.org/item/AIHPA_1988__49_3_387_0/ %G en %F AIHPA_1988__49_3_387_0
Sudarshan, E. C. G.; Imbo, Tom D.; Imbo, Chandni Shah. Topological and algebraic aspects of quantization : symmetries and statistics. Annales de l'I.H.P. Physique théorique, Tome 49 (1988) no. 3, pp. 387-396. https://www.numdam.org/item/AIHPA_1988__49_3_387_0/
[2] , in Relativity, Groups and Topology II, edited by B. S. DeWitt and R. Stora (Elsevier, New York, 1984), and references therein.
[5] , and , Center for Particle Theory. Report, No. DOE-ER40200-142, 1988.
[7] , in Lecture Notes in Mathematics, vol. 170 (Springer Verlag, Berlin, 1970).
[8] and , Phys. Rev., t. D 3, 1971, p. 1375 ; , Ph. D. Thesis, University of North Carolina, 1971.
[9] , and , Phys. Lett., t. B 213, 1988, p. 471. | MR
[10] and , Phys. Rev. Lett., t. 60, 1988, p. 481. | MR
[11] A group G is called perfect if [G, G] = G where [G, G] is the commutator (or derived) subgroup of G. See, for example, , A Course in the Theory of Groups (Springer Verlag, New York, 1982). | Zbl
[12] and , Math. Scand., t. 10, 1962, p. 111. | Zbl | MR
[13] and , Math. Scand., t. 10, 1962, p. 119 ; , Braids, Links and Mapping Class Groups (Princeton University Press, Princeton, 1974), and references therein. | Zbl | MR
[14] and , Center for Particle Theory. Report, in preparation.
[15] , Phys. Rev. Lett., t. 52, 1984, p. 2103. | MR
[16] and , Phys. Rev., t. B 31, 1985, p. 1191.
[17] , J. Phys., t. A 18, 1985, p. 3521. | Zbl | MR
[18] , Applications of Finite Groups (Academic Press, New York, 1959). | Zbl | MR
[19] , and , J. Phys., t. A 16, 1983, p. 729 ; , in Topological Properties and Global Structure of Space-Time, edited by P. G. Bergmann and V. de Sabbata (Plenum, New York, 1986); , Phys. Rev., t. 90, 1953, p. 270. | MR
[20] , Abh. Math. Sem. Hamburg, t. 4, 1926, p. 47. | JFM
[21] B3(R2) is torsion-free and is also isomorphic to the group of the trefoil knot. For more on braids and knots see , Topics in the Theory of Group Presentations (Cambridge University Press, Cambridge, 1980), and J. S. BIRMAN in Ref. 13. | Zbl
[22] , Proc. Roy. Soc. London, t. A 265, 1962, p. 229. | Zbl | MR
[23] , Ann. Math., t. 38, 1937, p. 533. | Zbl | JFM
[24] and , Duke Math. Jour, t. 29, 1962, p. 243 ; , Trans. Amer. Math. Soc., t. 122, 1966, p. 81. | Zbl | MR
[25] See Refs. 7 and 8, as well as , J. Math. Phys., t. 7, 1966, p. 1218 ; and , J. Math. Phys., t. 9, 1968, p. 1762; , Phys. Rev., t. 176, 1968, p. 1558 ; J. Math. Phys., t. 12, 1971, p. 304; , J. Phys., t. A 5, 1972, p. 936.
[26] Further references on nonscalar quantizations are, , Nucl. Phys., t. B 271, 1986, p. 227; Syracuse University Report No. SU-4428-361, 1987 ; Syracuse University Report No. SU-4428-373, 1988 ; as well as Ref. 2.






