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Algebraic quantum field theory
and noncommutative moment problems II

J. YNGVASON

Science Institute, University of Iceland

Ann. Poincaré,

Vol. 48, n° 2, 1988, Physique theorique

ABSTRACT. 2014 Methods are presented for constructing strongly positive,
linear functionals on partially symmetric tensor algebras. The results are
applied to the quotient algebra where ~ is Borchers test function

algebra and Fc the locality ideal. In particular it is shown that this algebra
has a separating family of finite dimensional representations and that
the kernels of the translationally invariant, strongly positive functionals
on the algebra have a minimal intersection.

1. INTRODUCTION

The subject of this paper is a construction of strongly positive func-
tionals on Borchers’ tensor algebra ~ modulo the locality ideal j~,. The
interest in such functionals is due to the fact that they correspond to states
on a quasi-local C*-algebra that is associated with ~/J~,. The paper is a
sequel to a joint paper [1] ] of the author with J. Alcantara, and I refer to [1] ]
for a discussion of the general setting for these investigations.

In [1] bounded representations of the algebra ~/~~ were constructed
in the following way : First the problem was reduced to a study of partially
symmetric tensor algebras over finitely dimensional spaces using a method
introduced in [2 ]. In a second step bounded representations of such alge-
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162 J. YNGVASON

bras were obtained by embedding them into group algebras. In section 3
of the present paper an alternative for this second step is proposed. Here
the partially symmetric tensor algebras are embedded into a tensor product
of full tensor algebras. In this way one can show that admits a sepa-
rating family of finite dimensional representations, and one obtains also
a large set of explicitly given strongly positive functionals. I expect that
these functionals will eventually lead to a simple characterization of the
strongly positive functionals on ~/~ My conjecture is that a functional
on ~/~~ is strongly positive if and only if it gives rise to a strongly positive
representation (see (2.9)) of all abelian subalgebras of ~/~.
While this conjecture has not yet been proven, several results on the

size of the cone of strongly positive functionals have been obtained. In
theorem 4 . 7 is proven that every linear functional with the pro-
perty that the singularities of the n-point distribution are bounded inde-
pendently of n can be written as a linear combination of strongly positive
functionals. Also it is possible to generalize a construction of translatio-
nally invariant, positive functionals developed in [3] ] so that includes

strongly positive functionals as well.
In the course of the proofs of these statements a topology T on ~/~c

is introduced that seems to be naturally adopted to the strongly positive
functionals. An analogous topology on the totally symmetric tensor algebra
was studied in [4 ]. In order to prove that continuity properties of the
action of a group on ~/~~ carry over to representations of the C*-algebras
associated is desirable to have a better understanding of
this topology. These matters will be dealt with in a separate paper.

2. SOME ELEMENTARY OPERATIONS
WITH STRONGLY POSITIVE FUNCTIONALS

(2.1) Let u be a *-algebra and denote its positive cone by
9t~ = { ~e 9t}. A linear functional on 9t is called positive if it is
positive on u+. Let r be a family of C*-seminorms on u and denote by
9t~ the closure of 9t~ in the topology defined by the seminorms in r.
A linear functional on u is called r -strongly positive if it is positive on
9t~. We denote the set of all r-strongly positive functionals The
following proposition follows directly from the bipolar theorem.

(2 . 2) PROPOSITION. 2014 9t~ is a weakly closed, convex cone in the dual
space of 9t. The F0393-continuous, positive linear functionals on u form a
dense subcone of 9t~.

Let B be a subalgebra of U and denote by r I £ the family of C*-semi-
norms on B obtained from r by restriction. If co is a r-strongly positive
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163ALGEBRAIC QUANTUM FIELD THEORY. PROBLEMS II

functional on 9t, then the restriction S is r -strongly positive on ~.
Let ~~ B denote the set of all such restrictions of r-strongly positive
functionals to S.

(2. 3) PROPOSITION. dense subcone of B+’0393|B.
Proof. 2014 It is clear that ~ ! S c B~. On the other hand, if 

then co is by prop. 2 . 2 the weak limit of positive functionals that are r |B-
continuous. The assertion now follows from the fact that a positive func-
tional on a subalgebra of a C*-algebra has a continuous, positive extension
to the whole algebra [5 ].

(2 . 4) REMARK . It is generally not true that every r-strongly
positive functional on a subalgebra B can be extended to a r-strongly
functional on the whole algebra, cf. theorem 9 in [6 ]. (The algebras in this
example are tensor algebras where the usual notion of positivity coincides
with that of strong positivity, cf. [7], theorem 2).

(2.5) Let 9t~ and 9t~ be *-algebras and a family of C*-seminorms
on ~, i = 1, 2. Let 9t~ -~ 9t~ be a linear map that is positive, i. e.
~(p 1 &#x3E; + ) c 9t~B and continuous w. r. t. the topologies &#x3E; and ~2).
Then ~p maps 9t~ into 9t~ and its adjoint defined by 
maps the strongly positive functional on 9t~ into those on 9t~B

(2.6) In particular ~p could be a *-homomorphism ~(1) ~ 9t~..If/?2 is
a C*-seminorm on U(2), then p1 = 03C6*p = p o 03C6 is a C*-seminorm on U(1).
If c rb then 03C6 is continuous w. r. t. the topologies 

(2. 7) Another example is provided by the mappings ~ ~ ~,
defined by

with b~U fixed. These mappings are positive and continuous w. r. t.
any family of C*-seminorms on 9t.

(2 . 8) Next we consider tensor products. Let 9t~B 9t~B r(1), r(2) be as
above. The algebraic tensor product ~(1) (g) 9t~~ is in a natural way a
*-algebra, and 9t~ and 9t~~ are embedded in 9t~ 0 9t~ as commuting
subalgebras, if they have unit elements. On the other hand, there are in
general many families of C*-seminorms on 9t~ (g) 9t~ that induce the
topology on 9t~ i = 1, 2. Suppose i = 1, 2 and consider a
C*-semiriorm p on U(1)~U(2) with Q a2) = p 1 (a 1 )p(a2) (cf. [8 ],
ch. IV). We have then
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164 J. YNGVASON

where the C*-seminorms /?i 0maxp2 and p1 ~minp2 are defined in the

following way :

where the sup is taken over all representations 7r of ~(1) (x) 9t~B such that
for On the other hand p1 ~minp2 is defined by a

tensor product representation of 9t~ (x) ~(2). Let 7r~ be a representation
of on a Hilbert space ~~ with II = i = 1, 2. Let ~tl 0 rc2
denote the tensor product representation on J~i 0 Then

The C*-norm p1 ~maxp2 is in general difficult to deal with, since it involves
representations that are not explicitly known. We shall therefore have to
be content with the minimal tensor product, and we define

(2.9) For the following discussion it is convenient to introduce the

concept of a strongly positive representation. Let 9t be a *-algebra and 03C0
a *-representation of U (in general unbounded) defined on a domain D
in a Hilbert space H. If r is a family of C*-seminorms on U, we call 03C0 a

r-strongly positive representation, if the functionals a ~ ( ~ are

r-strongly positive for all 03C8 E D. Because of (2 . 7) it suffices to require
this for some cyclic subspace of ~. The following proposition is a simple
corollary of the fact that r-strongly positive functionals are precisely
those that can be approximated by F0393-continuous positive functionals.
These latter functionals are given by vectors in representations that are
bounded by C*-seminorms in r.

(2.10) PROPOSITION. - Let 03C01 be a 0393(i)-strongly positive representation of
Hilbert space Then 7ri (x) ~min0393(2)-

strongly positive representation of U(1) O U(2) on q}1 (x) D2.

(2.11) COROLLARY. 2014 Let ccyk, i = 1, 2, j, k be linear functionals on

9t~ such that I21 12  oo for all a E ~~ and such that

is 0393(i)-positive for all sequences (03BBj) E l2. Then the functional

is a 0min r(2)-strongly positive " functional on ~1 (8) ~2’
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165ALGEBRAIC QUANTUM FIELD THEORY. PROBLEMS II

Proof 2014 This follows from (2.10) and a generalized GNS-construction
with the matrices {~%} (cf. e. g. [9 ], theorem 2 . 3) : There are represen-
tations ~i on domains i and vectors S2~i~, i = 1, 2; j E such that

The condition on implies by (2. 7) that 7r, is strongly positive, and the
statement follows from (2.10).

Conversely we have

(2.12) PROPOSITION. - Functionals of the form

functionals 1, ... , N  oo and 
positive , for all (~.) the I-’~1~ positive ,
functionals on ~~1~ 0 ~~2~. the algebras is then functionals

’ form

with positive and F0393(i)-continuous functionals are already dense.

Proof 2014 This is again a consequence of the fact that r-strongly positive
functionals can be approximated by F0393-continuous positive functionals.
Every positive functional on ~(1) 0 9t~ that is continuous w. r. t. a semi-
norm in ~min0393(2) is given by a vector state in a tensor product repre-
sentation, and every vector in the tensor product can be approximated
by a finite sum of product vectors. The statement for the abelian case
follows from [8 ], theorem 4 .14.
We shall now consider special algebras, the partially symmetric tensor

algebras Sp(E) studied in [2] and [7].
Let E be a linear space with an antilinear involution *. Let p be a *-inva-

riant relation on E. The algebra Sp(E) is defined as the quotient algebra
where T(E) is the full tensor algebra and is the two sided

ideal generated by a Q b - b Q9 a, (a, b) E p. Sp(E) is a natural way a *-alge-
bra with unit. If E is a topological vector space it is understood that E @n
is completed w. r. t. a suitable tensor product topology and T(E) is the
direct sum of these completed spaces. Also ~p is taken to be the closed
ideal generated by the commutators.
SJE) is a graded algebra :
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166 J. YNGVASON

where n If co is a linear functional on Sp(E) we
denote by OJn its restriction to S p(E)n.

Let 03C9(1) and be two linear functionals on Sp(E). Their s-product
( [10 ], cf. also [11 ]) is defined by

for ai E E = Sp(E) 1, where the sum is over all partitions of { 1 ... n} into
subsets { i 1, ... , ik }, {j1,...,jl} with i1  ...  ik;j1  ... jj including
the empty sets.

(2 .13) PROPOSITION. - cc~~ 1 ~sa~~2~ is a well defined linear functional on
S p(E).1, f ’ r is.a family of C*-seminorms on Sp(E) and 03C9(1), 03C9(2) are r-strongly
positive then is also 0393-strongly positive.

Proof Consider the linear map

of E = into Sp(E) (x) It is clear that [a, b = 0 in Sp(E) implies
= 0. Hence ~p extends to a homomorphism

also denoted by ~p. We have = (c~~ 1 ~ (x) c~~2~) o ~p so is a
well defined linear functional on Sp(E). Also, it is clear that ~p is continuous
if Sp(E) is equipped with the topology defined by rand Q Sp(E)
with the topology defined by r By (2-6) and (2 .11) it follows that

is r-strongly positive if this holds for c~~ 1 ~ and c~~2~.
Next we consider multiplication of functionals by sequences of positive

type, i.e. sequences {03B3n}n~0 of complex numbers such that is
a positive semidefinite matrix.

(2.14) PROPOSITION. - Let M be a linear functional on S p(E) 
, 

a sequence of positive type. If 03C9 is 0393-strongly positive, W. r. t. a family of
C*-seminorms r, then the same holds for the functional defined by

Proof - The sequence { defines a linear functional y on the algebra
C[X] ] of polynomials in one indeterminate:

Moreover, this functional is strongly positive by the solution of the

1-dimensional moment problem. If we define a homomorphism

Annales de Henri Poincaré - Physique ’ theorique 
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167ALGEBRAIC QUANTUM FIELD THEORY. PROBLEMS II

for a E E and canonical extension to SP(E), we may write

The assertion thus follows from (2.6) and (1. 11).

(2.15) For the construction of invariant, strongly positive functionals
a result on conditionally strongly positive functionals is needed. A functio-
nal (D on Sp(E) is called conditionally strongly positive (w. r. t. a family
of C*-seminorms r) if co is positive on all elements of SP(E)T that have a
vanishing component in Sp(E)o = C.
The following variant of a theorem of Hegerfeldt ([72], theorem 2 .1 )

holds :

(2.16) PROPOSITION. - If 03C9 is hermitean and conditionally strongly

positive, then exp = 

/ 1 n!03C9s ... s03C9 f.s strongly positive.
n

Proof 2014 First we note that by the bipolar theorem we can approximate co
by F0393-continuous, conditionally strongly positive functionals. Since the
mapping OJ H exp |s03C9 is weakly continuous it is therefore sufficient to

prove the assertion for F0393-continuous functionals. We can then follow
closely the proof in [12 ]. By the Jordan decomposition we can write
cv = OJ1 - OJ2 where cv2 are ~’continuous and positive functionals.
We have then I  cc~3(a*a)1~2 for all a, with = const. + cv2).
Pick an 8 &#x3E; 0 and consider the functional

for some constant CE  oo . If 1 denotes the functional ( 1, 0, 0, ... ) E 
we have therefore

for n &#x3E; Ceo (Note that 1 + is ~-continuous.) Hence by (2.13)
and (2.2) we have that

is strongly positive, and this holds then also for

Vol. 48, n° 2-1988.



168 J. YNGVASON

3 . EMBEDDING OF Sp(E) INTO T(E) (x) ... (x) T(E)

(3.1) In this section we consider a finite dimensional space E and suppose
that p is a relation on a basis { ..., of E, cf. [2 ]. We can think of p
as a symmetric, reflexive relation on {1, ..., N } and picture it as a graph
with N vertices 1, ..., N and links between the pairs (i, j ) E p. Let p‘ denote
the complementary relation which we also picture as a graph : A pair (i,j)
is linked in p‘ iff it is not linked in p, iff do not commute in Sp(E).
A sub graph y of p‘ will be called totally connected, if all pairs of vertices
in y are j oined by a link. An isolated vertex is also considered as a totally
connected subgraph.

(3 . 2) Let yk, k = 1, ... , M be totally connected subgraphs of p‘ such
that every vertex os some yk. (In this case we write
i E yk.) Let be the subspace of E spanned by the vectors ei with i E yk,
and let be the corresponding tensor algebra. We now define a
homomorphism

in the following way :

where the k-th factor is either e~, if i E y~ or the unit element ’0 E 
if i f/ yk. This definition fixes uniquely on all of T(E).

(3 . 3) PROPOSITION. - ker 03C603C1 = F03C1.
Proof 2014We recall some notations and results from [2 ]. Ifl= (i 1, ..., in)

is a multiindex ; i 1 E ~ 1, ..., N} we write eI (x) ... Q It is also
convenient to define e~ - t If J = Ub ...jj we write I J if J can be

transformed into I by « admissible permutations », i. e. if there is a sequence J,
of multiindices, ...J~), l = 0, ..., L with Jo = J, JL = I and J, and

differing only in a single pair

In [2 ], lemma 3.1, it was shown that 03A303B1I03C6I E F03C1 if and only if

for all I.
Now from the definition of ~pP it follows that

Annales de l’Institut Henri Poincare - Physique ’ theorique ’
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where the multiindex is obtained from I by deleting all indices except
those belonging to the totally connected subgraph yk. (Note that := t)

Since the elements ~(i) (8) ... (8) form a linearly independent set, we
see that

The assertion thus follows once the following lemma is proven.

Proof ~ c/ Lemma. - Since an admissible permutation cannot change
the order of indices belonging to a totally connected subgraph, it is clear
that I - J implies = for all k. Conversely, assume that = Jck~
for all k. First we remark that if an index i appears in I vi times, then it also
appears vi-times in 1~, for every k with i E yk. Since every i belongs to some yk,
we conclude that J must be a permutation of Io. Suppose now that i1 ~ jm.
If p for some  ~ then there exists a maximal totally connected
subgraph yk of 03C1c containing jl and jm = i1. For this k we obviously have

= ... ) 5~ =(..., ...) contrary to hypothesis. Hence we
conclude that E p for all  m, so we can permute these indices and
obtain J’ = (~, ...,~) with j i = jm = i 1.
By repeating this procedure we gradually transform J into I, so I J.

This completes the proof of the lemma and thus of prop. 3.3. 
,.

Since annihilates it induces a homomorphism

Sp(E)  T(E(1)) (8) ... (8) T(E~). We thus obtain the following
(3 . 5) COROLLARY. Sp(E) is isomorphic to a subalgebra of

T(E(1») (8) ... (x) 

(3.6) REMARK. The only condition which the totally connected sub-
graphs yk have to fullfill is that each i should occur in some yk. In particular
we might choose for the yk all connected subgraphs with two vertices and all
isolated points. In order to keep the number of factors in the tensor product
as small as possible one could also choose to consider only maximal totally
connected subgraphs, i. e. those who are not properly contained in larger
totally connected subgraphs.

(3 . 7) PROPOSITION. - For every nonzero element a E Sp(E), there is a

finite dimensional representation 7C of the algebra with ~c(a) 5~ 0.

Proof. 2014 The finite dimensional representations of T(E) separate points,
cf. [7.?] ] and [7]. The same holds therefore for the tensor product
T(E) (8) ... (8) T(E) and any of its subalgebras, in particular SP(E) by (3 . 5).
Vol. 48, n° 2-1988.



170 J. YNGVASON

4. STRONGLY POSITIVE FUNCTIONALS ON 

It was shown in [2] ] that for every nonzero element there is

a homomorphism C of into a partially symmetric tensor algebra
Sp(E) with E finite dimensional such that ~(a) ~ 0. Combining this fact
with proposition (3.7) we obtain

(4 .1 ) PROPOSITION. - For every nonzero element there is a

finite dimensional representation ~ of the algebra with 7r(~) ~ 0.

The finite dimensional representation of can be used to give an
alternative proof of theorems 3 . 4 and 3 . 5 in [1 ]. Moreover, since every
positive, linear functional on T(E) is strongly positive ( [7 ], thm. 2), we
may use (2.11) and (3.5) to obtain a large collection of strongly positive
functionals on We shall now establish some results on the existence

of strongly positive functionals with specific properties.

(4.2) Let ff be a locally convex topology on a *-algebra U and let r
be a family of ~"-continuous C*-seminorms. Define a locally convex topo-
logy g- on U by the seminorms

where the supremum is taken over all F0393-continuous, positive functionals
x, q is a ~-continuous seminorm, and 

-

Alternatively, we could say that g- is the topology of uniform convergence
on F-equicontinuous sets of F0393-continuous states. Obviously  ~ q,
and then we have p° and thus  ~ q. If pEr, then p = p.

(4 . 3) The seminorms q are monotonous w. r. t. the b,
then ~) ~ q(b). This means that 9t~ is a normal cone for the topology
g- [7~]; in particular every ~"-continuous, linear functional is a linear

combination of r-strongly positive functionals.

(4.4) The natural topology is the Mackey topology r,

and eventually we would like to have an explicit description of T in a
similiar way as was done for the totally symmetric tensor algebra in [4 ].
However, for the topology T seems to be complicated to describe
in terms of Schwartz-norms on ~. We shall therefore be content here

l’Institut Henri Poincaré - Physique théorique
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with a weaker result. Consider the topology 1" 00 on f/ that is defined by
all seminorms of the form

where cn is an arbitrary sequence of positive numbers and (1k is a Schwartz-
norm on F that is independent of n [14 ]. The tensor product can be either
the B- or the Tr-product for seminorms since f/ is a nuclear space. We denote
the corresponding quotient topology on also by Every 03C4-conti-
nuous C*-seminorm on this algebra is obviously 03C4~-continuous, and we
define Too by using the family of all such C*-seminorms.

Proof 2014 The topology Too is weaker than 03C4~ by (4 . 2). One has to show
that conversely there is for every 03C4~-continuous seminorm q another
03C4~-continuous seminorm q’ with q ~ q’. The proof is similar to that of
theorem 4 . 6 in [2] so I can be brief. As a first step one shows that if q
is a 03C4~-continuous seminorm, then also the seminorms

are Too-continuous for arbitrary sequences { of positive numbers. Here
an denotes the homogeneous components As in [2] this goes
by constructing a sequence of positive type { ~ } such that

where = By (2.14) the functionals can be approxi-

mated by F0393-continuous positive functionals. An inspection of the proof
of (2.14) also shows that if x is majorized by a seminorm a p-~ 

then one can choose the ~-continuous, positive functionals that approxi-
mate in such a way that they are majorized by the seminorm

Hence we have

To complete the proof of the proposition we have to show that every
Vol. 48, n° 2-1988.
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03C4~-continuous seminorm can be dominated by a seminorm of the form (*).
This, however, follows essentially from the fact established in theorem 3. 5
in [1] ] that the continuous C*-norms induce the original Frechet-topology
on for all n. One has only to note one additional feature that is
implicit in the proof in [7]: A Schwartz-norm ~.~~nk on is conti-
nuous w. r. t. a C*-seminorm that can be chosen to be continuous

w. r. t. the 03C4~-norm 03A3~.~~nk on Hence all the Schwartz-norms

n

= 1, 2, ... are continuous w. r. t. the 03C4~-continuous C*-norm
= p and the proof is complete. -

n

By (4.3) we have the following corollaries

(4.6) THEOREM. 2014 (~/~c)r~ ~ ~ normal cone for the topology 
(4.7) THEOREM. Every 03C4~-continuous linear functional on can

be written as a linear combination of strongly positive and 03C4~-continuous
linear functionals.
Using the fact that with the topology is a nuclear space, one

proves also in the same way as in theorem 4 . 8 in [2 ].

(4.8) THEOREM. - F or every 03C4~-continuous seminorm q on there
is a strongly positive, 03C4~-continuous linear functional OJ with 

As a last topic we consider strongly positive functionals that are invariant
with respect to the natural action ax of the translation group f~d on 
If co is a positive functional we denote its kernel by and
its left kernel by L(a~) _ ~ a ~ = 0 }.

In [3 ], theorem 3 . 3 it was proven that the intersection of the left kernels
of all translationally invariant, positive functionals on ~/~~ is the zero
element, and the intersection of the kernels is the linear space = clo-

sure of { ~ 2014 E ~/~~, x E (~d }. Because of theorem 4. 7 and prop.
(2 .16), we can use exactly the same method as in [3] to prove the following
strengthening of this result :

(4 . 9) THEOREM. n and n = {0}, where the inter-
section is over all strongly positive and translationally invariant, 
nuous linear functionals on 
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