@article{AIHPA_1987__46_2_155_0,
author = {Breen, Stephen},
title = {Feynman diagrams and large order estimates for the exponential anharmonic oscillator},
journal = {Annales de l'I.H.P. Physique th\'eorique},
pages = {155--173},
year = {1987},
publisher = {Gauthier-Villars},
volume = {46},
number = {2},
mrnumber = {887145},
zbl = {0623.28010},
language = {en},
url = {https://www.numdam.org/item/AIHPA_1987__46_2_155_0/}
}
TY - JOUR AU - Breen, Stephen TI - Feynman diagrams and large order estimates for the exponential anharmonic oscillator JO - Annales de l'I.H.P. Physique théorique PY - 1987 SP - 155 EP - 173 VL - 46 IS - 2 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPA_1987__46_2_155_0/ LA - en ID - AIHPA_1987__46_2_155_0 ER -
%0 Journal Article %A Breen, Stephen %T Feynman diagrams and large order estimates for the exponential anharmonic oscillator %J Annales de l'I.H.P. Physique théorique %D 1987 %P 155-173 %V 46 %N 2 %I Gauthier-Villars %U https://www.numdam.org/item/AIHPA_1987__46_2_155_0/ %G en %F AIHPA_1987__46_2_155_0
Breen, Stephen. Feynman diagrams and large order estimates for the exponential anharmonic oscillator. Annales de l'I.H.P. Physique théorique, Tome 46 (1987) no. 2, pp. 155-173. https://www.numdam.org/item/AIHPA_1987__46_2_155_0/
[1] and , Borel summability beyond the factorial growth. Ann. Inst. H. Poincaré, Sect. A., t. 41, 1984, p. 37. | Zbl | MR | Numdam
[2] and , Generalized logarithmic Borel summability. J. Math. Phys., t. 25, 1984, p. 3439-3443. | Zbl | MR
[3] , , and , The exponential anharmonic oscillator and the Stieltjes continued fraction, preprint. | MR
[4] , Exponential perturbations of the harmonic oscillator. J. Math. Phys., t. 22, 1981, p. 1952-1958. | Zbl | MR
[5] , An improvement of Watson's theorem on Borel summability. J. Math. Phys., t. 21, 1980, p. 261-263. | Zbl | MR
[6] and , Methods of modern mathematical physics. Vol. IV, New York, Academic Press, 1975. | Zbl
[7] , The Lipatov argument. Commun. Math. Phys., t. 74, 1980, p. 273-280. | MR
[8] , Leading large order asymptotics for (φ4)2 perturbation theory. Commun. Math. Phys., t. 92, 1983, p. 179-194. | Zbl | MR
[9] , Large order perturbation theory for the anharmonic oscillator. Mem. Amer. Math. Soc., to appear.
[10] and , The Lipatov argument for φ43 perturbation theory. Commun. Math. Phys., t. 102, 1985, p. 59-88. | MR
[11] and , Modified perturbation theories for an anharmonic oscillator. Phys. Lett., B., t. 79, 1978, p. 403-405.
[12] , Functional integration and quantum physics, New York. Academic Press, 1979. | Zbl | MR
[13] , The P (φ)2 Euclidean (quantum) field theory. Princeton, Princeton University Press, 1974. | MR
[14] , , and , Boundary conditions in the P(φ)2 Euclidean field theory. Ann. Inst. H. Poincaré, Sect. A, t. 25, 1976, p. 231-334. | MR | Numdam
[15] , Large orders and summability of eigenvalue perturbation theory: a mathematical overview. Int. J. Q. Chem., t. 21, 1982, p. 3-25.





