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ABSTRACT. 2014 We study the time decay of finite energy solutions of
the non linear Klein-Gordon (NLKG) equation

in space dimension n ~ 3, by using a reformulation of the original method
of Morawetz and Strauss previously applied in [77] ] to the non linear
Schrodinger (NLS) equation

We prove that such solutions satisfy some of the time decay properties
of the solutions of the free equation. The assumptions on f cover the
case of a single _ ~, ~ with ~, &#x3E; 0 and 4/n  /? -1  4/(n - 2).
Our results extend those of Brenner [4] ] [5 ]. We also improve the results
of [11 ] for the NLS equation. As an intermediate result, we obtain bounded-

(*) Laboratoire associe au Centre National de la Recherche Scientifique.
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400 J. GINIBRE AND G. VELO

ness properties in time (in a suitable sense) of finite energy solutions of
both equations under fairly weak assumptions on f

RESUME. - On etudie la decroissance en temps des solutions d’energie
finie de 1’equation de Klein Gordon non lineaire

en dimension d’espace n ~ 3, en utilisant une reformulation de la methode
originale de Morawetz et Strauss, appliquee precedemment dans [77] ] a
1’equation de Schrodinger non lineaire (SNL)

On montre que de telles solutions satisfont certaines des decroissances en

temps des solutions de 1’equation libre. Les hypotheses sur f couvrent Ie cas
d’une seule avec ~, &#x3E; 0 et 4/~/?201414/(~-2).
Les resultats etendent ceux de Brenner [4] ] [5 ]. On ameliore également
les resultats de [77] ] sur 1’equation SNL. Comme resultat intermediaire,
on obtient des proprietes de borne uniforme en temps (en un sens conve-
nable) des solutions d’energie finie des deux equations sous des hypo-
theses assez faibles sur f.

1. INTRODUCTION

A large amount of work has been devoted recently to the study of the
asymptotic behaviour in time of the solutions of the non linear Klein-
Gordon (NLKG) equation [3] ] [4] [J] [7J] [16] [77] ] [18] [79] [20] ] [23 ] [24]

and of the non linear Schr6dinger(NLS) equation [8 ] [77] ] [7~] ] [79] ] [20]
[27] ] [22] ]

where ~p is a complex valued function defined in space-time p~n + 1, the
dot denotes the time derivative, ¿B is the Laplace operator in [R" and f is
a non linear complex valued function. For simplicity we have taken the
mass equal to 1 in the NLKG equation. From now on the equations (1.1)

Annales de l’Institut Henri Poincaré - Physique theorique



401NON LINEAR KLEIN-GORDON AND SCHRODINGER EQUATIONS

and ( 1. 2) will be referred to as the NLKG and NLS equation respectively.
A typical form of the interaction f is the sum of two powers, namely

with 0. One of the main results of those investi-

gations is the fact that, for repulsive interactions, arbitrarily large solu-
tions of the NLKG and NLS equations exhibit some of the time decay
of solutions of the corresponding free equation (namely the equation
with f = 0).
For the NLKG equation all the proofs of such results are extensions

of that first given in [15 ], which covers the case of dimension n = 3 and
sufficiently regular solutions. The result was generalised in [16 as regards
the assumptions on f, and extended in [3] ] to higher dimensions. The
next progress was to relax the regularity assumption on the solutions
so as to cover the case of arbitrary finite energy solutions (see definition
at the end of Section 3). For space dimensions n ~ 3 and interaction essen-
tially controled by a single power p typically p 1 = p2 = p in ( 1.3)) with
4/n  ~ 2014 1  4/(n - 1), it was proved [4] ] [5] that arbitrary large finite
energy solutions exhibit some of the time decay of solutions of the free
equation. That result was also obtained for n = 3 and 4/3~201414[~](*).

For the NLS equation the same method has been applied in [7~] ] to
_ 

the case of space dimension n = 3, of an interaction controlled by a single
power and of sufficiently regular solutions. That treatment has been extended
in [77] to any dimension n ~ 3, to a class of interactions that contains the
special case ( 1. 3) with

and to arbitrary finite energy solutions, again shown to possess some
of the decay of solutions of the free equation. The proof, again a descendant
of that in [7~ ], required a detailed and systematic analysis of the latter,
which was split into a number of relatively independent steps, each of
which was pushed to its natural limit. The NLS equation can also be
treated by the pseudo-conformal invariance method, which yields some
related results [8] ] [27] ] [22 ].
For both the NLKG and NLS equations, small data results can be

obtained by methods of a more general and more standard character [17]
[18] [19] [20] [23] [24].
The purpose of the present paper is twofold. First we reanalyze the NLKG

equation and the time decay of its solutions in the light of [11]. We intro-
duce a class of spaces which are convenient to characterize the behaviour

(*) See note added in proof.

Vol. 43, n° 4-1985.



402 J. GINIBRE AND G. VELO

of solutions. The behaviour in space is described by Besov spaces and
the behaviour in time by Birman-Solomjak spaces F(L’) (see (1.6) below).
The properties of finite energy solutions of the free equation in terms
of those spaces are studied in Section 2, the main result of which is stated
as Proposition 2.2. We then study in Section 3, in terms of such spaces,
the uniform boundedness in time of arbitrary finite energy solutions of
the NLKG equation. The main result, namely Proposition 3.2, holds for
arbitrary space dimensions n ~ 3 and under rather weak assumptions 
which reduce to

in the special case (1. 3). The method of proof is a direct estimation and
does not require the elaborate machinery of [15 ]. In Section 4, we apply
that machinery, in the formulation of [77], to the NLKG equation. For
any dimension n ~ 3, we prove that arbitrary finite energy solutions

satisfy some of the time decay of solutions of the free equation, as expressed
in terms of the spaces mentioned above. The results are stated in Propo-
sitions 4 .1 and 4 . 2. The assumptions on f cover the special case ( 1. 3)
for pl and /?2 in an interval which depends on a parameter 5(r) (see for
instance (4.60)-(4.62)), but which is unfortunately always strictly smaller
than ( 1. 4). For a single power however, the entire interval (4/n, 4/(n - 2))
is accessible. The decay properties stated in Propositions 4.1 and 4.2
are not the strongest that can be obtained from the method. See on that
point the comments at the end of Section 4.
The second purpose of this paper is to improve the results of [77] on

the NLS equation. That equation is treated in Section 5. We first study
the decay properties of solutions of the free equation in terms of the spaces
introduced above. The main result is Proposition 5.1 which generalizes
Lemma 3 .1 of [77]. We then turn to the uniform boundedness properties
of arbitrary finite energy solutions. The main result, namely Proposition 5 . 3,
holds for arbitrary space dimension n ~ 3 and almost under the same
assumptions on f as for the NLKG equation, in particular under the
condition (1.5) in the special case (1.3). We finally complement the study
of the time decay of arbitrary finite energy solutions given in [11] (see
Section 5) and show that, under the same assumptions on f, finite energy
solutions actually exhibit the same decay as obtained in Proposition 5.1
for solutions of the free equation. The main result is stated in Proposi-
tion 5 . 5.

In the framework of scattering theory, the decay properties obtained
for both equations imply asymptotic completeness, as soon as there exists
a suitable theory of the Cauchy problem at infinity. This is the case for
the NLS equation, where such a theory is developped in [77]. For the
NLKG equation, only partial results are available [77] ] [18 ] [79] ] [20]
[23] ] [24 ]..

Annales de l’Institut Henri Poincaré - Physique theorique



403NON LINEAR KLEIN-GORDON AND SCHRODINGER EQUATIONS

We conclude this introduction by giving the main notation used in
this paper. We denote by the norm in Lr = Pairs of conju-
gate indices are written as rand r, where 2  r ~ oo and r -1 + r -1 = 1.
For any integer k, we denote by Hk = Hk(n) the usual Sobolev spaces.
For any interval I of R, for any Banach space B, we denote by B)
the space of continuous functions from I to B. We denote by B) (l &#x3E; 1)
the space of l times continuously differentiable functions from I to B.

For any q, 1  ~  oo, we denote by Lq(I, B) (resp. L1oc(I, B)) the space
of measurable functions ~p from I to B such (resp.

If I is open we denote by ~’(I, B) the space of vector
valued distributions from I to B [14 ]. We shall use the Besov spaces of
arbitrary order and the associated Sobolev inequalities [7]. We use a
notation such as = for those spaces and, for the legibility
of the forrnulas, we denote B II Lq(I, the norms in B
and in Lq(I, B) when B is such a space. In order to formulate the time decay
of the solutions of the NLKG and NLS equations we also introduce the
following spaces. For any t e [R, let yt be the unit interval with center t.

For any rri (1  ~ ~ 00) and ~(1 ~ ~ ~ (0), for any Banach space Band
for any interval I c IR, we define lm(Lq, I, B) as the space of measurable
functions from I to B for which

is finite, with obvious modifications if q and/or m is infinite. The spaces
I, B) are Banach spaces with the norm defined by ( 1. 6). If B = C, we

write lm(Lq, I) for lm(Lq, I, C). If I = IR, I will be omitted in the notation.
Those spaces have been introduced by Birman and Solomjak [2 ]. For
relevant additional properties we refer to [77]. Finally we use the nota-
tion y±= Max ( ± y, 0) for any y E M. The interaction termfwill be assumed
to satisfy a number of assumptions which are stated where first needed,
namely (H1) before Lemma 3.3 (see (3.17) and (3.18)), (H2) before Pro-
position 3.2, (H2)’ before Proposition 5.3 and (H3) before Lemma 4.5
(see (4.22)).

2. DECAY ESTIMATES
FOR THE FREE MASSIVE KLEIN-GORDON EQUATION

In this section we study the space-time integrability properties of the solu-
tions of the free massive Klein-Gordon equation. We define ay = ( - ð + 1)1~.
With any r, 1 ~ r  oo we associate the variables ax(r), 5(r) and y(r) defined by

Vol. 43, n° 4-1985.



404 J. GINIBRE AND G. VELO

The starting point is an estimate due to Brenner [5] ] for the operator
exp (i c~ 1 t ) for fixed t. For the convenience of the reader, the proof is recalled
in the Appendix.

LEMMA 2.1. - Let 2  r  oo and 0  0  1. Then

where

We shall also need the fact that, for some values of  and o, the convo-
lution with , denoted by ,u *, is a bounded operator in suitable combi-
nations of spaces lm(Lq). We state that property more generally as follows.

LEMMA 2 . 2. - Let ,u(t ) = Min with 0  a -_- 2/q  1 and
b. Then

(1) If b = 2/m  1~ ,u* is bounded from n to 

and a fortiori from lm(Lq) to lm(Lq).
(2) If b = 1, ,u* is bounded in the same spaces for any m &#x3E; 2.

(3) If b &#x3E; 1, ,u* is bounded from to 

Proof. - We denote the characteristic function of the interval 03B3t by
the same symbol yt. Using the support properties of the convolution,
for any s E yo, for and for any complex valued measurable func-
tion ~ we write

where

and

Using the Hardy-Littlewood-Sobolev inequality [72] we estimate 0)
the contribution of 1 by

Taking the norm in l2 we obtain

Annales de Henri Poincare - Physique ’ theorique "
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Using the pointwise estimate of  for t| &#x3E; 1, we estimate 03C62 by

From the discrete version of the Hardy-Littlewood-Sobolev inequality
if 0  b  1 and of the Young inequality if b &#x3E;_ 1, we obtain

for the values of m announced in cases (1) and (2) and for m = 2 in case (3).
The lemma now follows immediatly from the estimates (2.4) and (2.5)
and from the embeddings of the lm(Lq) spaces for various values of m and q.

Q. E. D.
Under the same assumptions on jLt, one could derive boundedness properties
of ,u~ between more general combinations of lm(Lq) spaces. For the appli-
cations we have in mind, in particular for the next lemma, we have restricted
our attention to the case where the final space is the dual of the initial one.
We next consider the following situation. Let Bo be a Banach space

of functions defined in [R" and let B be its dual. We suppose that f/n == ~(~")
is continuously embedded and dense in Bo so that B is naturally embedded
into ~ = ~’(tR"). We take the duality between f/n and ~ to be conjugate
linear in the first element and linear in the second, so that it reduces to
the usual scalar product in L2 when restricted to f/n x L2. Let To be the
space lm(Lq) or an intersection or a sum of such spaces with 1  m  oo,
1  q  oo . Let T be the dual of To. Let To(B o) be the space of measurable
functions 03C6 from tR to Bo such that ~D0 ~ T0 and let T(B) be defined
similarly. In such circumstances f/1 is dense in To, ~n+ 1 is dense in To(Bo)
and T(B) is the dual of To(Bo). We can then state the following result.

LEMMA 2 . 3. - Let Bo, B, To, T be as above. Let U( . ) be a strongly
continuous unitary group in L2(f~n). Assume in addition that, for any
t ~ 0, U(t) maps Bo into B and that, for any ~p E Bo, the function t t2014~ 

from [R to B is strongly measurable and satisfies the estimate

with ~ E L~(tR"). Assume in addition that convolution with ~ is a bounded
operator from To to T. Then, for any and 
satisfies the estimate

Proof 2014 By density, it is sufficient to prove (2. 7) for 03C6 E !/n and, by
duality and density again, it is sufficient to prove that

Vol. 43, n° 4-1985.
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for any 0e ~n + 1, where ~ . , . ~ n + 1 denotes the duality in n + 1 variables.
Now

The last norm in (2.9) is estimated by

Using (2. 6) and the fact that /.1* is a bounded operator from To to T, we
can continue (2.10) as

which implies (2. 8) and thereby completes the proof. Q. E. D.

There is some flexibility in the choice of the assumptions on Bo and To
in Lemma 2. 3. The choice made here is both typical and sufficient for our
present purpose. Special cases and/or variations can be found in [9 ] [10] [11 ].
We are now in a position to determine the space-time integrability

properties of the solutions of the free massive Klein-Gordon equation.
We first state the basic technical result.

PROPOSITION 2.1. - Let r, p and 7 satisfy

let

and

Then the map 03C6 ~ 03C9-11 exp is bounded from to

l2(Lq, B03C1r,2) + B03C1r,2) and a , fortiori from L2(Rn) to lm(Lq, B03C1r,2).
Proof From the definition of the Besov spaces and from the Sobolev

inequalities it follows that Br ,2 a(r’) is continuously embedded in 
provided r’ ::; r and ~’ ~ Q. Let a -_- a(r), ~ _-- ~(r), y - y(r) and similarly

Annales de l’Institut Henri Poincare - Physique theorique
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a’ == a(r’), ~’ - b(r’) and y’ = y(r’) (see (2 .1 ) for the definition). From the
previous embedding and from Lemma 2.1 it follows that

= 

provided we can find r’, ~’ and e such that

or equivalently

Eliminating 9, we can continue (2.14) as

provided r’ and 6’ satisfy (2.15) and

The result will then follow from Lemmas 2 . 2 and 2 . 3 with B = 

T = + m(L (0), with q and m defined as in Lemma 2.2 and with
a = 203C3’ +, b = 2(y’ - 6’), provided r’ and (/satisfy (2 .15), (2 .17) and 7’  1/2.
It remains to choose r’ and Q’ for given rand 6. That choice can be made
independently in the region t ~  1, which yields a and q, and in the region

&#x3E; 1, which yields band m, respectively. For ~ ~ 1, we choose (7’ = o-+,
r’ = 2 if n = 1, and y’ = 2/ 2. That choice satisfies all the required
conditions under the assumption (2.11), and yields (2.12). For ~j ~ 1
we make the following choice. If (n - 2)03B1  26 - y we take r’ = r, (7’ = cr,

so that b = 2(y - (7). If (n - 2)x ~ 2Q, we choose 2cr’ == (n - 2)x’ so that
b = y. Furthermore, for y  1, we taker’ = r, so that b = awhile for y &#x3E; 1,
which occurs only 4, we take ~’ - Max { o-, (~20142)/[2(~2014 1)] } so
that b = ~/(~20141)} &#x3E; 1 in that last case. One checks

easily that the previous choices satisfy (2.15), (2.17) and the condition
~-’  1/2. Q. E. D.

REMARK 2.1. - The choice of (r’, (7’) is best understood from Fig. 1

(corresponding to the case n &#x3E; 3) where the various conditions are repre-
sented in the (y, 6) plane. The allowed region for (y’, (7’) is the triangle ~
limited by the lines y = 27, (n - 2)03B1 = 2(7 and 6 = 1/2. The relation (2.15)
expressing that (y, 7) is controlled by (y’, 7’) is equivalent to the fact that
(y, cr) lies in the lower right quadrant with apex at (y’, 7’). In the more
complicated region &#x3E; 1, for given (y, 7), one looks for (y’, 7’) in the
allowed triangle  such that (y’, (7’) controls (y, 7) and that y’ - 7’ is maxi-

Vol. 43, n° 4-1985.
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FIG. 1. - Time decay of the ’ solutions of the free massive , KG equation in the ’ (y, 0") plane.
The case shown is n = 6.

mal, namely such that (y’, 6’) lies as far away as possible from the line
y - 6 = 0. In addition there is no point in increasing y - cr as soon as
it becomes larger than 1/2. The line y - 6 = 1/2 intersects the lines y = 2(7
and (n - 2)03B1 = 2o- at y = 1 and 03B4 = 1 respectively and separates out
from the triangle ~ a smaller left triangle ~’. For (y, 6) in S’’, the best
choice is obviously (y’, (7’) == (y, o-). For (y, 7) below 79’ 1, the best
choice consists in taking y’ == y, with (n - 2)x’ = 2(7’. For (y, 7) in the
remaining region, one can choose any (y’, (7’) in ~B~’ that controls (y, 7).
The choice made in the proof is (y’, ~7’) = (y, (7) if (y, 7) E ~B~’. If (y, 0") f/ 79,
one chooses (y’, 7’) on the line (n - 2)x’ = 27’ with y’ = y if y  1, 6’ = 6
if that choice yields y’ &#x3E;- 1, and y’ - 1 in the remaining cases. The resulting
values of 1/m are (y - (7)/2 in , 03B4/2 below 79’ and as long as 03B4  1, and 1/2
in the remaining region.
For the understanding of the case of the full non linear equation, it is

convenient to redraw the various regions in the (6, p) plane see Fig. 2).
The space-time integrability properties of the finite energy solutions

of the free massive Klein-Gordon equation are now obvious. Let

and Let i and 

Annales de l’Institut Henri Poincaré - Physique theorique
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FIG. 2.- Time decay of the solutions of the free massive KG equation in the (6, p) plane.
The case shown is n = 6. 

’

Then the solution of the free equation with initial condition _ ~po
and _ 03C80 is formally given by

PROPOSITION 2.2. - Let r, p, 6, q and m be as in Proposition 2.1.
Let 1 and Then the map given by (2.18)
is bounded from H1 C L2 to + and a fortiori to

lm(Lq, B~,2).

3. UNIFORM BOUNDS ON THE SOLUTIONS
OF THE NLKG EQUATION

In this section we prove that the finite energy solutions of the NLKG

equation belong to B) for suitable spaces B, suitable values of q

Vol. 43, n° 4-1985.
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and suitable assumptions on the interaction f Preliminary to that result
are some estimates on the interaction term which will be used again in
the following sections both for the NLKG and NLS equations.
The first result is a minor variation of Lemma 3 . 2 of [7~] ] and will

be given without proof.

LEMMA 3.1. - with |f’(z)| ~ C0|z|p-1 for 

1~p~. Let 0  03BB,  Uetl - l - k  oo,1  m _ 
Then the following inequality holds

for all ~p such that the norms in the right hand side are finite. The same
result holds for ~, = 1, 1  7 ~ 2 = k = m.

The basic estimate on the interaction term can now be stated as Lemma 3.2

below. As a first approximation, the reader can take 11 = 0 in that Lemma.
The case 11 7~ 0 will be used only in the proof of Lemma 4 . 5 below, actually
with an additional complication which however cannot be included
here without obscuring the main point.

LEMMA 3 . 2. - Let with  for some p,

( p -1 )/v ~ and 0~=p+~)-ll. Then, for all 

if~&#x3E;0, the following inequality holds :

where M( . ) is a constant depending only on provided

and provided v ~ 0 satisfies

and

Proof. - We estimate the right hand side of (3.2) by Lemma 3.1 as

with

Annales de Henri Poincare - Physique ’ theorique "
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and we estimate the last norm in (3.6) by the Holder inequality as

with

Since 0 _ r~ ~ 5()/~ the conditions (3 . 7) and (3 . 9) determine u with
1 ~ u  oo for any k ~ 2 and v &#x3E;_ 2. We next estimate the norms of 03C6
in and by interpolation between the norms in L2, in H1
and in Bp 2. and by using the Sobolev inequalities if necessary. The pro-
blem is best visualized in the ((7, p) plane (see Figure 3). The interpola-
tion is possible provided _

FIG. 3. - The interpolation in Lemma 3.3. The allowed intervals
, for ~, + b(k) - 1 and ~((p - 1 - riv)u) -1 are AB and CD respectively.

ThP case shown corresponds to p &#x3E; 0.

and

or equivalently, after elimination of u through (3.7) and (3.9)

Vol. 43, n° 4-1985.
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The conditions (3.10) and (3.12) constrain ~(k) to lie in the intersection
of two intervals, both of which are non empty under the assumptions made
(in particular p -1- r~v &#x3E; 0). The interpolation is possible, namely the
conditions (3.10) and (3.12) are compatible for k, under the conditions (3 . 3)
and

When possible, the interpolation yields

where 0~v~v+ ~p-~03BD and , v are related by the homogeneity
condition ..

or equivalently

The minimum value of v is obtained as follows. Since u is a decreasing
function of k (for fixed l, v and 1]) by (3. 7), (3.9), one can always arrange
for ~, + 5(~) 2014 1 and 5((~ 2014 1 - 1 to have the same sign. If both
are negative, one can estimate the norms of ~p in and in 
modulo Sobolev inequalities, in terms of the norms of ~p in L2 and H1,
thereby obtaining v = 0. If both are positive, one can estimate the norms
of 03C6 in B03BBk,2 and in in terms of the norms of 03C6 in H1 and in 
thereby obtaining ,u + v = p - Substitution of that relation into (3 .16)
yields the lower bound (3.4) for v.
The maximum value of v is obtained by using the Sobolev inequalities

as little as possible, or equivalently by minimizing  0, this is achieved
by performing a barycentric decomposition on the degree of derivation, "

namely by taking ~, _ ,u + pv, thereby obtaining the upper bound (3.5)
on v in that case (the result is then independent of the specific choice of k).
If p &#x3E; 0, this is achieved by taking k as large as possible and s (or u) as
small as possible. If that procedure leads to ~((/? 2014 1 - ~v)u) = 0, one
performs the same barycentric decomposition as previously. If not, one
interpolates the norm in between the norms in L2 and in B~,2
(modulo Sobolev inequalities), and the norm in B03BBk,2 between the norms
in H1 and in (without using Sobolev inequalities), thereby obtaining
~, _ ,u + p( 1 - ~). Substitution of that relation into (3.16) yields the upper
bound (3.5) for v when p &#x3E; 0. Finally, the lower interpolation condi-
tion (3 .13) can be omitted, since it is weaker than (3. 5) with v 2 0.

Q. E. D.
In the study of the boundedness properties of the solutions of the NLKG

l’Institut Henri Poincaré - Physique theorique
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equation, we shall need the following assumption on the interaction f
C), /(0) = 0 and for all z E C,

with

We need one more estimate, obtained by combining Lemma 3.2 with
estimates on the operator = 1 sin03C91t (see Section 2). 

’

LEMMA 3 . 3. - Let n &#x3E; 3. Let/satisfies (HI) with p1 - 1 &#x3E; 2/n. Let r,
p and 6 satisfy (2.11) with 6 &#x3E;_ 0, let y(r)  1, y(r) sufficiently close to 1.

If n = 3, let in addition

Then, there exist 5 and ~ &#x3E; with 0 _ ~   1  ~ &#x3E; (  ~(r)) and there
exists v  1) such that for any n and any ~0,
K 1 (t ) f (~p) E Bp 2 and the following estimate holds

where M depends only on the norm of ~p in H 1.

Proof - For definiteness, we assume that y(r) = 1 - e with e &#x3E; 0,
e sufficiently small, and we derive the estimate (3 . 20) with ~ ~ 1 :t e
and v  1 - e. By (3 .17), we can decompose f as f = fl + f2 with

 C z p~ -1, j = 1, 2 and we estimate separately the contributions
offl andf2 to (3 . 20). For simplicity, we continue the proof with one single
power p in f From Lemma 2. 1, elementary properties of the Besov spaces
and the Sobolev inequalities, we obtain

with b == y(l) + and ~, = (7 + (1 + 0)(x(~), under the conditions

We estimate the last norm in (3.21) by Lemma 3.2 with ~ = 0 (so that v
drops out of the picture) and continue (3.21) as

under the conditions (3 . 22), (3 . 3), (3 . 4), (3 . 5) and

The other preliminary assumptions of Lemma 3.2 are trivially satisfied.
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The values of l, () and v may depend both on p and on the choice of &#x3E; or .

We are then faced with the following problem : for each p satisfying

we have to make two choices of 1, 8 and v, corresponding to &#x3E; and ,
that ensure the conditions (3.’22), (3.3), (3.4), (3.5), (3.24) and in addition
~ ~ 1 ± Band 0  v&#x3E;  1 - E.

We now eliminate v. With everything else held fixed, the conditions
1 - E, (3.4) and (3.5) constrain v to lie in the intersection of

two non empty intervals. Their compatibility reduces to the conditions
obtained by crosscomparison of the endpoints of those intervals, namely

and

We next remark that for fixed p, if (1, e) satisfy the conditions relevant for
the case &#x3E; , namely ~ &#x3E; 1 + 8, (3 . 3), (3 . 22), (3 . 24), (3 . 26) and (3 . 27),
then (l, 0) satisfy the conditions relevant for the case . In fact the condi-
tion b   1 - 8 follows from 5 == y(l)  y(r) = 1 - E, the conditions

(3 . 22) and (3 . 26) are obvious, and the conditions (3 . 24) and (3 . 27) become
weaker for fixed when e decreases. We are therefore left with the task
of finding 1 and 9 satisfying the conditions 5 ~ 1 + 8, (3 . 3), (3 . 22), (3.24),
(3.26), and (3 . 27) or equivalently, after elimination of 0, of finding 1 and ~
satisfying

and the conditions (3.3), (3.26) and (3.27). (The condition 0 ::Ç 0 ~ 1
is equivalent to y() : 5 : ~(l ) and follows from (3 . 28) and the fact that
y() ~ = 1 - 8). Since the conditions (3 . 29), (3 . 3) and (3 . 27) involving
~, take the form of upper bounds on /), and since ~, is increasing in ~, the
optimal choice for 03B4 is 5 = 1 + 8, and it remains only to find satisfying

and the conditions (3.3), (3.26) and (3.27). Since ~y(r)/2==(l-s)/2
and oc() ~ (1 + by (3.30), the inequality in (3.31) is relevant only for
n = 3, where it reduces to

which is compatible with (3.30) provided cr + E  ~(r)/3 = y(r)/2, namely
provided 2cr  y(r) and E is sufficiently small.
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In order to prove that for each p satisfying (3 . 25) there exists l satisfying
(3.30), (3.32), (3.3), (3.26) and (3.27), it is sufficient to show that the

range of values of p defined by (3. 3), (3. 26) and (3.27) covers the inter-
val (3 . 25) when b(l ) varies in the interval defined by (3 . 30), (3 . 32). Now
the conditions (3. 3), (3.26) and (3.27) are obviously compatible for all 
satisfying (3.30) and (3.32), and define an interval for p, the endpoints
of which are affine increasing functions of 5(~). Therefore, the accessible

values of p fill an interval, the upper (resp. lower) end of which is obtained
by substituting in the upper conditions (3 . 3) and (3 . 27) for p (resp. in the
lower condition (3 . 26) for/?) the upper (resp. lower) value of ~(l ) allowed
by (3 . 30), (3 . 32). For the upper value b(l ) = 5(r), (3 . 27) reduces to

which is satisfied under the condition (3.25) for E sufficiently small, while
(3 . 3) has been shown to hold for such a choice of l, r and p in the proof of
Lemma 3 . 3 of [10 ]. For the lower values of 5(~ namely

the condition (3.26) becomes

with the second term in the maximum relevant only for n = 3 and 03C3 &#x3E; 1/3,
and the condition (3.34) is satisfied under the condition (3.25) and in
addition (3 .19) for n = 3 provided E is sufficiently small. Q. E. D.

We are now in a position to prove the basic uniform boundedness result
for the solutions of the NLKG equation.

PROPOSITION 3.1. - 3. Let f satisfy (HI) with 1 &#x3E; 2/n.
Let 03C6 E Hi) with 03C6 E L2) be a solution of the NLKG equa-
tion in !Ø’(IR, H-1). Let r, p, 6 and q satisfy (2 .11) and (2 .12). If n = 3, let
in addition

Then ~p E B~,2) and the norm of ~p in that space is estimated in terms
of the norm of in L 00 (f~, L2).

Proof 2014 It is sufficient to prove the result 0 and y(r)  1, y(r)
sufficiently close to 1. The result for (7 2 0 and general r with 0 ~ y(r)  1

follows by interpolation between that special case and uniform boundedness
in H 1, while the result for 03C3 &#x3E;_ 0 and y(r) 2 1 follows from the special case
and the Sobolev inequalities (Actually the condition (3.35) is obtained
from (3.19) by the procedure just described). The result for o~  0 follows
from the result for 6 = 0 and the embedding of the Besov spaces for
fixed r. From now on we restrict our attention to the special case 7 &#x3E;_ 0

y(r)  1, y(r) sufficiently close to 1.
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Under the assumptions made on f and ~p, it has been shown in Lemma 2.1
of [7~] that ~p satisfies the integral equation

with ~po = and = The integral in the right hand side of (3 . 36)
can be regarded as a Bochner integral in L2. Furthermore, we know from
a slight variation of Lemma 3 . 3 of [7~] ] that B~,2) for r, p, q
satisfying (2.11) and (2.12). Actually the proof of that fact is a simplified
version of the present one, in so far as it does not require any integrability
property at infinity of the integral in the right hand side of (3 . 36). We define

We restrict our attention to positive times. Taking the norm in of
both members of (3.36) and estimating the integrand by Lemma 3.3
and more precisely by (3 . 20), we see that for t &#x3E;_ 0, k(t) satisfies the inte-
gral inequality

with

The main points of that estimate are the integrability of  in R and the
fact that v is strictly smaller than one. We now take a &#x3E; 0, multiply both
members of (3 . 29) by the characteristic function /~ of the interval [o, a ],
and take the norm in Applying the Young inequality in the spaces
l-(L’) (see for instance Lemma 5 . 6 of [11 ]) and the inclusion c 

1, we obtain

The contribution of the free term is controlled by Proposition 2.2. Since
v  1, the left hand side of (3.41) is bounded uniformly with respect to a.
This completes the proof. Q. E. D.

The result of Proposition 3 .1 is especially relevant in the situation where
energy conservation ensures that all solutions of the Cauchy problem
for the NLKG equation with finite energy initial data are uniformly bounded
in the energy space, defined below. We introduce the following assumption
onf 

.

(H2). There exists a non negative function V E cø1(C, ~) such that V(O) = 0,
V(z) = V( for all z e C and /(z) = 
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The energy space is defined as H 1 EB L2 and for any EB L2,
the energy is defined by r

The assumption (H2) formally implies the conservation of the energy
(with 03C8 = 03C6) for the NLKG equation. Since in the present case the poten-
tial V is non negative, the norm in H 1 0 L2 is controlled by the energy.
Under the assumptions (HI) and (H2). it follows from Proposition 3 . 2

in [70] that for any to E IR, for any ~o) E H1 @ L2, there exists a unique
~p E with (p E L2 ) which solves the NLKG equation in
o’(fR, H-1). Clearly for any to any 03C6 E H1) with 03C6 E L2)
which solves the NLKG equation can be regarded as the unique solution
in of the Cauchy problem for that equation with initial data

time to. From now on, such solutions will be called finite

energy solutions. We can now state the final result of this section.

PROPOSITION 3 . 2. - 3. Let f satisfy (HI) with 1 &#x3E; 2/n
and (H2). Let r, p, 6 and q satisfy (2.11) and (2.12) and in addition (3.35)
for n = 3. Then any finite energy solution of the NLKG equation belongs
to B~,2) and its norm in that space is estimated in terms of its

(conserved) energy.

4. TIME DECAY OF THE SOLUTIONS
OF THE NLKG EQUATION

In this section we prove the main result of this paper, namely the fact
that for a class of repulsive interactions, all finite energy solutions of the
NLKG equation are dispersive in the sense that they satisfy some of the
space-time integrability properties previously found for the solutions
of the free equation (see Proposition 2.1 and 2.2). The proof relies on
the Morawetz-Strauss estimate [7~] which is directly related to the approxi-
mate dilation invariance of the equation (see Lemma 4.3) and on the
finiteness of the propagation speed for the NLKG equation (see Lemma 4 . 2).
Combining those two estimates one proves that suitable Besov norms of
finite energy solutions of the NLKG equation are arbitrarily small in
arbitrarily large time intervals (see Lemma 4. 5). That property is exploited
through the integral equation (3 . 36) and for that purpose one needs some
additional estimates on the integrand in that equation (see Lemma 4.6).
With those estimates available the proof follows step by step the corres-
ponding proof for the NLS equation, given in [11 ]. One first proves that
the previous Besov norms of finite energy solutions tend to zero at infinity
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in time (see Lemma 4. 7) and then that they possess the appropriate time
decay. The final results are collected in Proposition 4.1 and 4.2.
As a preparation for the proof of the basic estimates we first need to

approximate an arbitrary finite energy solution by smooth solutions of
a regularized equation. For that purpose we choose an even non negative
function with compact support and such that = 1.
For any positive interger j, we define = 

and correspondingly

where * denotes convolution in We consider the regularized equation

The approximation result can be stated as follows.

LEMMA 4.1. - Let f satisfy (HI) and (H2), let and let
Then

(1) For all j E ~+, the equation (4. 2) has a unique solution E ~(l~, H1).
Furthermore E 1(R, Hk+ 1 0 Hk) for any positive integer k, and 03C6j
satisfies the differential equation

in Hk -1. In addition satisfies the conservation of energy

and is bounded in H 1 0153 L2 uniformly with respect to and t.
(2) Let ~p be the finite energy solution of the NLKG equation with

= ~po and = Then for any compact interval I and any r,
2  r  2*, ~p~ converges to ~p in ~(I, Lr) when j tends to infinity. For any

~p~(t )) converges to strongly in H 1 3 L2 when j
tends to infinity.
The proof of Lemma 4.1 is the same as that of the analogous result

contained in the proof of Proposition 3 . 2 of [70] ] (where however the
mass term, if any, is not included in the free evolution), except for the proof
of pointwise strong convergence in H 1 0153 L2, which follows from weak
convergence and the conservation of energy.
We are now in a position to prove the finiteness of the propagation

speed in the form of local energy conservation. For any open R)
of center x and radius R in ~n, for any t E [R, we define = ),
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with the convention that B(x, R) is empty if 0. For any measurable
set Q c ~n, for any (~p, ~r) E H 1 EÐ L2, we define

LEMMA 4 . 2. - Let/satisfy (HI) and (H2). Let ~p be a finite energy
solution of the NLKG equation. Then for any open ball Q c !R", for any
t E [R, the following inequalities hold :

and

where C denotes the complement in [?".

Proof 2014 Without loss of generality, we can assume that Q = B(O, R)
and that t is positive. The formal proof of (4. 5) proceeds as follows. Define

Then

Integrating (4.9) in the region

applying Gauss’s theorem and taking into account the fact that the vec-
tor Q) in Rn+1 is time-like and outgoing on the side surface of Q(Q, t ),
one obtains (4. 5).

In order to give an actual proof, we first approximate ~ by the solu-
tion of the equation (4.2) as described in Lemma 4.1. We then define

It follows then from the differential equation (4.3) that

We now choose a function m E ~+) with m(s) = 0 for s  0, m(s) = 1
for s &#x3E;_ 1 and 0 s 2, and we define mE(s) = m(s/E). From (4.13),
we obtain
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where x = Since the vector 8~) in f~n+ 1 is time like with e° &#x3E;_ 0,
the first term in the right hand side of (4.14) is negative. Integration of
(4.14) between 0 and t then yields

We next let j tend to infinity and E tend to zero in that order. By Lemma 4 .1,
part (2), the left hand side and the first term in the right hand side of (4.15)
tend to E(~), Q-(~)) and E(~(0), Q) respectively. The remainder
term in (4 .15) can be rewritten as

and is estimated by

We continue the estimate by using (HI), restricting our attention to the
case of a single power p 1 = p2 == ~ for brevity. Using the Holder and
Young inequalities, we obtain

Both norms in the right hand side are uniformly bounded in j and r because
of (H2) and energy conservation, so that the right hand side tends to zero
when} tends to infinity for fixed Band t. This completes the proof of (4. 5).
The inequality (4.6) follows immediatly from (4.5), from the conser-

vation of energy and the reversibility in time of the NLKG equation.
Q. E. D.

The local conservation of the energy has been stated between the times 0
and t. Since the equation is time translation invariant, the same property
holds between any two times.
We now recall the basic decay estimate [15 ]. We define

Under the assumption (HI), the map ~p t2014~ is bounded and Lipschitz
continuous from 1 to L 1. We also introduce the function

g(x) - (i + ~ x ~ p)-i/~ we define g’(x) = x ~ )( 1 + ~ x ~ 2) -1 ~2 and
gl(x) = + x ~ g’(x). The function g is positive and decreasing in 
the function g(x) is increasing and bounded. As a consequence,
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(n - ng. Furthermore, an elementary computation shows
that 0394g1 1  0 for n &#x3E;- 3.

LEMMA 4 . 3 . - Let n ~ 3. Let/satisfy (HI) and (H2). Let 03C6 be a finite

energy solution of the NLKG equation. Then for any sand t in 
~p satisfies the inequality

Proof The proof is almost the same for the NLKG and the NLS
equation. One first derives the corresponding result for the solution ~p~
of the regularized equation (4.2) given by Lemma 4.1 and one then takes
the limit~’ -~ oo . Using the fact that ~p~ E ~ 1 ( f~, Hk), the differential equa-
tion (4 . 3) and the boundedness of x ~ one computes the time derivative

(compare with (5.18) in [77]). From there one, the proof is the same as
that of the corresponding result for the NLS equation (see Lemma 5.2
in [77]). Q. E. D.

In the same way as in [7~] and [11 ], the estimate of Lemma 4 . 3 will
be used through its following consequence.

LEMMA 4 . 4. - Let n &#x3E;- 3. Let f and ~p be as in Lemma 4. 3 and assume
in addition that W1 &#x3E;- 0. Then for any 8 &#x3E; 0, ao &#x3E; 0 and 10 &#x3E; 0, there
exists bo &#x3E; 0, depending only on 8, ao, 10 and on the energy E of ~, and
there exists c such that bo - 10 and

One can take

Sketch of proof For 0, (4.17) implies

by an elementary computation. From there on, the proof is the same as
that of Lemma 5 . 3 of [11 ], with 03C8 (r) in that Lemma replaced by 21".

Q. E. D.
The next step in the argument consists in proving that an arbitrary finite

energy solution of the NLKG equation is arbitrarily small in arbitrarily
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large intervals of time provided these intervals are sufficiently far. That
result holds both for positive and negative times. For simplicity we state
it only for positive times. It requires a repulsivity property of the inte-
raction term f, which we state as follows.

(H3). There exists C &#x3E; 0 and p4, ps with 1 s ps  oo such that
for all 

LEMMA 4 . 5. - Let n &#x3E;_ 3, let f satisfy (HI) with p 1 - 1 &#x3E; (H2)
and (H3). Let r, p, ~ and q satisfy 6 &#x3E; 0, the conditions (2.11) and (2.12),
and in addition (3 . 35) if n = 3. Let ~p be a finite energy solution of the NLKG
equation. Then for any 8 &#x3E; 0 and any 1 &#x3E; 0, there exists a &#x3E; 0 such that

Proo, f : 2014 As in the case of Proposition 3 .1, it is sufficient to prove the
result for y(r)  1, y(r) close to 1. The result for general r with 0  y(r)  1
then follows by interpolation between that special case and uniform
boundedness in Hi, while the result for y(r) 2 1 follows from the special
case by the Sobolev inequalities. From now on, we restrict our attention
to the case y(r)  I, y(r) close to 1.
The proof is similar to that of Lemma 5 . 9 of [11 ]. We estimate ~p by

using the integral equation (3 . 36). We define ko(t) and k(t) by (3 . 37), (3 . 38).
Since ko E by Proposition 2. 2, we can choose al such that

In order to estimate the integral in the right hand side of (3.36), we
split the region of integration over T in the three subregions

and

for some (small) 0i, 0  0i  1, and some (large) 82, to be chosen below.
We define, for i = 1, 2, 3,

and we estimate successively those three functions of t in In the
intervals 11 and 13, namely for kl and k3, we use the estimate (3.20) of
Lemma 3 . 3 and the Young inequality for the spaces f(L’) to obtain

and
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with M depending only on the energy E of ~p. Since the last norm in (4.26)
and (4. 27) is also estimated in terms of E by Proposition 3 . 2, we can choose
81 sufficiently small and 82 sufficiently large, depending only on 8 and E,
to ensure that

In the interval 1~ namely for k2, we estimate the integrand in a slightly
different way, using Lemma 3. 2 with ~ positive and small. We decompose f
as fl + f2 as in the proof of Lemma 3.3 and estimate the contribution of
each term separately. We continue the proof in the case of a single power
for simplicity. Using Lemma 2.1 with 0=0 and Lemma 3.1, we obtain
with ~p = 

under the conditions 2 S 1 s rand (3 . 7), and with ~, = cr + oc( l ), so that
the condition ~,  1 is automatically fulfilled. We next split = {J3 + ({J4 + 
where

We estimate separately the contributions of i = 3, 4, 5, to the last
norm in (4 . 29) by Holder’s inequality in the form (3.8) with the same
value of ~ (for convenience) but with different values i = 3, 4, 5, for v,
namely v3 = 2, v4 = p4 + 1 and v5 = p5 + 1. The interpolation condi-
tions (3.10) and (3.12) have now to be satisfied (for fixed p and 1) by the
same k for all three values of!;. Those conditions are compatible in k provided
the conditions (3 . 3) and (3 .13) hold for all three values of v, and provided
in addition the conditions (3 .12) on k for various values of v are compatible.
The latter requirement is easily seen to be satisfied for ri sufficiently small,
a sufficient condition being

which from now on we assume to hold. Continuing the estimate as in
Lemma 3.2, we obtain
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under the conditions vi ~ 0 and (3. 3), (3.4) and (3. 5) for vi, vi, i = 3, 4, 5.
Note that contrary to l and k, vi may depend on i. We next eliminate v

as in the proof of Lemma 3 . 3, but requiring only that 0  1, thereby
obtaining from (4 . 31 )

provided for v = ~ i = 3, 4, 5, there hold the conditions (3 . 3), (3.13) and

For any p satisfying (3.25) and for y(r) sufficiently close to 1, one sees

easily (see the proof of Lemma 3. 3) that those conditions can be satisfied
for a suitable choice of l ~ [2, r] and for v = vi, i = 3, 4, 5, provided ~ is
sufficiently small.
By the assumption (H3) and the definition of ~p4, ~p5, the last sum in (4. 32)

is estimated by

We now substitute (4. 32) and (4. 34) into the definition of k2 and estimate
the time integral by Holder’s inequality in l’(L’) spaces. We obtain

where

The first norm in (4.36) is estimated in terms of (}1 and e2, while the next
two factors are estimated in terms of the energy of {J by Proposition 3.2.
We next estimate the time integrals in (4 . 35) by Lemma 4 . 2 and Lemma 4 . 4
respectively. In fact, it follows from Lemma 4.2 that for each T

so that
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For fixed (}2, the right hand side of (4.38) tends to zero when t tends to
infinity, and the contribution of {J3 to k2 can therefore be made  E/4
by taking t sufficiently large, say t &#x3E;_ a2 (&#x3E; ~2). The second integral in (4 . 35)
is estimated by Lemma 4.4, which we apply with ao = Max (al, a2),
lo = + (}2 and E replaced by (E/4 to conclude that there exists c &#x3E; ao
such that the contribution of the second integral in (4. 35) to k2 is smaller
than E/4 for ] and b = a + l, so that

Collecting (4. 24), (4. 28) and (4. 39) yields (4.23). Q. E. D.

By interpolation with uniform boundedness of the solutions in Hi,
the result of Lemma 4.5 can be extended to other norms corresponding
to different values of r, p and q with 6  0. We refrain from a formal sta-
tement of this extension, which will not be used in the sequel.
The boundedness and decay results derived so far in Proposition 3.2

and Lemma 4.5 required only (besides repulsivity) the weak assump-
tion (3.25) on pl and p2. In order to proceed further, it is necessary that
some norm of an arbitrary finite energy solution satisfy a superlinear integral
equation in addition to the sublinear equation used previously (see (3 . 39)),
and for that purpose, stronger assumptions on (pl, p2) are needed. The
basic estimate, which complements Lemma 3.3, can be stated as follows.

LEMMA 4 . 6. - Let . n &#x3E;_ 3. Let f satisfy (HI). Let r, p, and o- satisfy the
conditions (cf. (2.11))

Assume that

In addition :
If n = 3, assume that 2cr  y(r) and

If n ~ 8 and

assume that

Then there exist ~ ~ and ð&#x3E; with 0515&#x3E;( b(r)) and there
exist and V  with
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such that for all 03C6 E H 1 n and any t ~ 0, the following estimate holds

Proof The proof follows closely that of Lemma 3. 3. For definiteness
we assume that 1 - Band 5(r) &#x3E;- 1 + E with E &#x3E; 0, E sufficiently
small, and we derive the estimate (4 . 47) with ~&#x3E; ~ 1 :t E. As in the proof
of Lemma 3.3, we decompose f as fl + f2 and estimate the contribution
of f1 and/2 separately. We continue the proof with a single power/? in/
and in that case, we derive the estimate (4 . 47) with one single power v &#x3E;
or v corresponding to ~ &#x3E; or ~. For definiteness, we replace (4 . 46) by

From Lemma 2.1 and Lemma 3.2 with ~ = 0, we obtain

with  = y(l) + under the conditions

and the conditions (3 . 3), (3 . 4), and (3 . 5). We then have to make two choices
of l, (} and v, corresponding to &#x3E; and , that ensure in addition the condi-

1 :t Band (4 . 48). We next eliminate v. The conditions (3 . 4), (3 . 5)
and (4 . 48) constrain v &#x3E; and v  to lie in the intersection of two non empty
intervals. They are compatible provided, in both cases &#x3E; and ,

and in the case &#x3E; ,

while in the case ,

The condition (4 . 51) &#x3E; is automatically fulfilled under the conditions (3 .18)
and (4.49) and need not be considered further. We next remark, as in
the proof of Lemma 3 . 3, that if (1, e) satisfy the conditions relevant for
the case &#x3E; , namely 03B4 ~ 1 + s, (4 . 49), (3 . 3) and (4 . 50), then (,0) satisfy
the conditions relevant for the case . In fact, the condition 5  1 - ~
follows from 5  = y(r)  1 - E, the conditions ~, - 1, (3 . 3) and (4. 50)
are satisfied because they become weaker when (} decreases for fixed 1,
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and the condition (4.51) for (} = 0 is satisfied under the condition (3 .18)
for E sufficiently small.

We are therefore left with the task of finding 1 and (} satisfying the condi-
tions 03B4 &#x3E;_ 1 + E, (4.49), (3 . 3) and (4. 50), or equivalently, after elimination
of (}, of finding 1 and 03B4 satisfying the conditions (3.28), (3.29), (3.3) and
(4. 50). As in the proof of Lemma 3 . 3, the optimal choice for 5 is 03B4 = 1 + E,
and it remains only to find satisfying (3.3), (4. 50), (3. 30) and (3. 31), the
latter condition being relevant only for n = 3, in which case it reduces

to (3 . 32). In order to prove that for each p satisfying the assumptions of
Lemma 4.6, there exists satisfying (3.30), (3.32), (3.3) and (4.50), it is

sufficient to show that the range of values of p defined by (3 . 3) and (4 . 50)
covers the interval described in the Lemma when 5() varies in the interval
defined by (3 . 30), (3 . 32). For fixed 1, the conditions (3 . 3) and (4. 50) define
an interval for p, both endpoints of which are affine increasing functions
of5(). That interval is non empty under the following condition, obtained
after an elementary computation by eliminating p between (3 . 3) and (4 . 50) :

For ~(l ) = 5(r), that condition reduces to

and is always satisfied for ~ sufficiently small, since p  (n - in the

range (4.40). That fact has two consequences. First, the final allowed
interval for p is non empty, namely the upper and lower conditions on p
derived below are compatible. Second, the upper end of the allowed interval
for p in the previous procedure is obtained by substituting the upper
bound b(l ) = 5(r) into the upper bound (3 . 3) for p, which yields

That condition is satisfied under the assumption (4.41) provided E is

sufficiently small.
As regards the lower end of the allowed interval for p, two cases can occur.

If ~(l ) = 1 + E satisfies (4 . 52), namely if

then the interval (3 . 3)-(4 . 50) for p is non empty for 5(7) = 1 + ~ and
the lower end of the interval for p is obtained by substituting the lower
bound ~(l ) = 1 + 8 into the lower bound (4 . 50) for/?, which yields
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and in addition, if n = 3, by substituting ~() = 3(6 + E) into (4 . 50), which
yields

The conditions (4 . 56) and (4. 57) are satisfied under the assumptions (4. 42)
and (4 . 43) provided E is sufficiently small. If ð( 1) = 1 +8 does not satisfy
(4. 52), then the lowest admissible value is given by equality in (4. 52),
and the lower end of the interval for p is obtained by equality in (3. 3)
and (4 . 50), or equivalently by eliminating ~(l ) between those conditions,
which yields

That condition is satisfied under the assumption (4.45) for s sufficiently
small, and is relevant under the assumption (4.44). In the ((7, p) plane,
equality in (4.44) defines a straight line which intersects the strip y(r)  1  ~(r)
from the point 5(r) = 1, to the point y(r) = I, p = [n/(2(n -1)) ]2,
and the condition (4 . 44) is relevant whenever the latter has 6  1/2, namely
for n &#x3E;- 8. Q. E. D.
The conditions (4.41)-(4.45) will be discussed after Proposition 4.1.

Here we simply remark that (4 . 42) implies ~i 1 - 1 &#x3E; 4/n.
At the present stage, we know that under suitable assumptions on p,

r, and p2. any finite energy solution of the NLKG equation satisfies
the following properties : the norm k(t) defined by (3 . 38) belongs to 
by Proposition 3 . 2, is small in large intervals by Lemma 4. 5 and satisfies
a superlinear integral inequality by Lemma 4.6. By a simple abstract
argument, those three properties imply that k(t) tends to zero at infinity
in the following sense.

LEMMA 4.7. - Let n &#x3E;_ 3. Let 1 satisfy (HI), (H2) and (H3). Let r, p,
and 03C3 satisfy (4 . 40) and in addition 2(1  y(r) if n = 3. Let p1 and p2 satisfy
(4.41), (4.42) and (4.43), (4.45) if relevant (see Lemma 4.6). Let 1/q = 6.
Let (J be a finite energy solution of the NLKG equation. Let k(t) be defined
by (3 . 38). Then ~k; l~(Lq, [a, (0)) II tends to zero when a tends to infinity.

Proof The assumptions of Lemma 4 . 7 collect those of Proposition 3 . 2,
Lemma 4 . 5 and Lemma 4 . 6. In particular (4 . 40) implies (2 .11 ), (4 . 42)
implies p 1 - 1 &#x3E; 2/n and (4 . 43) implies (3 . 35). From the integral equa-
tion (3 . 36) and Lemma 4 . 6, it follows that k satisfies the integral inequality

where ko is defined by (3. 37),

otherwise,
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M depends only on the energy of (J, and v&#x3E; ’ are as in Lemma 4.6. By
Proposition 2.2, ko satisfies the property to be proved for k. From there
on, the proof is almost identical with that of Lemma 5.10 and Corollary 5.1
in [77] ] and will be omitted. Q. E. D.

Knowing that k(t) tends to zero at infinity in the sense of the previous
Lemma, it is now an easy matter to derive the space time integrability
properties of the finite energy solutions of the NLKG equation.

PROPOSITION 4.1. - Let n ~ 3. Let f satisfy (HI), (H2) and (H3).
Let r, p, and 6 satisfy (4 . 40) and in addition 2r  y(r) if n = 3. Let p 1
and p2 satisfy (4.41), (4.42) and (4.43), (4.45) if relevant. Let 1/q = 6
and let m be defined by (2 .13). Let (J be a finite energy solution of the NLKG
equation. Then ~p E B~,2)’

I ndication of proof The result follows from Proposition 2 . 2, from
Lemma 4.7 and from the integral inequality (4. 59) by a slight variation
of Lemma 5 .11 in [11 ], which has to be modified as follows : the assump-
tion on ko should be reinforced to ko E lm(Lq) and the conclusion then states
that k E with suitable minor modifications in the proof. Q. E. D.

Note that the time integrability properties of the norm of (J in B~,2
obtained in Proposition 4.1 are the same as those obtained in Propo-
sition 2.2 for the solutions of the free equation.
We now discuss the assumptions (4 . 41)-(4 . 45) onp1 and p2 . For p  0

. and for fixed r, the lower conditions (4.42) and (4.43) are independent
of p, the lower condition (4.45) is irrelevant, and the upper condition (4.41)
becomes more restrictive when p decreases, since it takes the form

with y = o~)/(l 2014 p). Since in addition the norm in Bp, 2 is an increasing
function of p for fixed r, there is no advantage in taking p  0. For p &#x3E;_ 0

and fixed r, the lower conditions (4.42), (4.43) and (4.45) become more
restrictive when p increases. On the other hand, the upper condition (4.41)
(which is relevant only when stronger than the upper bound on p2 in (3 18)),
becomes weaker when p increases, at least for p not too large. However,
since the allowed interval for p1, p2 depends in a rather complicated way
on p and r, we continue the discussion in the special case p = 0 only.
In that case, Proposition 4.1 reduces essentially to the following result.

PROPOSITION 4. 2. - Let n &#x3E;_ 3, let/satisfy (HI), (H2) and (H3). Let r
satisfy y(r)  1  5(r). Let j~i 1 and /?2 satisfy
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and in addition, if n = 3,

Let {J be a finite energy solution of the NLKG equation. Then (J E Lr)
where 1/q = 5(r) 2014 1.

We now discuss the conditions on p1, p2 in Proposition 4 . 2. The condi-
tion (4.60) is easily seen to become weaker when ~(r) increases. For 5(r)
close to 1, it reduces to

On the other hand, it becomes weaker than the upper bound in (3.18)
for 5(r) &#x3E; ðo where 5o is the smaller root of the equation

namely

In particular ðo = 3(3 - y5)/2 - 1,146 for n = 3 and n = 6, bo = 4 - 2~2-1,172
for n = 4, for all n and for large n. The
allowed values for p1-I and p2 -1 in Proposition 4. 2 range over an
interval, both endpoints of which are non decreasing functions of ~),
starting from (4/n, 4(n -1)/ [n(n - 2) ]) for ~(r) close to 1 and reaching
(2(l+~o)/~ 4/(n - 2)) for (5(r)=(5o. For ~(r)&#x3E;(5o, the upper end remains
fixed at 4/(~-2) while the lower end increases according to (4 . 61) and
possibly (4 . 62). In the case of a single power ~i 1= p2 = p, the allowed values
of p-1 range over the interval (4/n, 4/(n-2)).

Additional decay properties of finite energy solutions of the NLKG
equation can be obtained from Proposition 4.1 or from its special case
Proposition 4.2 in several ways. Some immediate extensions are obtained
as follows. Let ~p be a finite energy solution and assume that B~,2)
as obtained by Proposition 4.1. Then by the Sobolev inequalities and
trivial embeddings of Besov spaces, ~p E B~:,2) for any r’, p’ with r’ 2 r
and p’ + 5(r’)  p + ~(r). Furthermore, by interpolation between that
result and uniform boundedness in Hi implied by energy conservation,
it follows that ~p E B~,’,2) provided

and

We refrain from giving more formal statements, especially since the time
integrability properties obtained for a given B~,’,2 norm by that procedure
are in general weaker than those of solutions of the free equation.
A better way to extend the results of Proposition 4.1 and 4.2 consists

in substituting again the decay there obtained into the integral equa-
de l’Institut Henri Poincaré - Physique theorique



431NON LINEAR KLEIN-GORDON AND SCHRODINGER EQUATIONS

tion (3.36). We have not checked to what extent under the assumptions
of Proposition 4.1 or 4.2 (for some r, p), that procedure would yield,
for an arbitrary finite energy solution, the time decays obtained in Pro-
position 2.2 for solutions of the free equation. The proof would require
additional estimates of the same kind as in Lemma 3.3 and 4.6, where
however the interpolation would make use of four points instead of three.
The corresponding program will be carried out in the next section in the
simpler case of the NLS equation.

5. TIME DECAY OF THE SOLUTIONS
OF THE NLS EQUATION

In this section we study the decay properties of the solutions of the NLS
equation. We first derive the decay properties of the solutions of the free
equation (see Proposition 5.1), then the uniform boundedness properties
of arbitrary finite energy solutions of the NLS equation (see Propositions
5.2 and 5.3) and finally the decay properties of such solutions (see Pro-
position 5.5).
We recall that the evolution group for the free Schrodinger equation

is defined by U(t) = For t ~ 0, U(t) is bounded and strongly
continuous in t from Lr to Lr for any r &#x3E;_ 2 with the bound

for all where 5(r) = n/2 - n/r (compare with (2.1)). From (5.1)
one obtains easily the following estimate.

LEMMA 5.1. - Let 2 oo 0. Then

where

Proof From the definition of Besov spaces, from the fact that U(t)
commutes with the convolution and from the estimate (5.1) one obtains
immediately.

for any r &#x3E;_ 2 and p E tR. The Sobolev inequalities, the estimate (5.4) and
the embeddings of the Besov spaces imply

for any 1 and ~, such that - r~ + ~(r) _ ~, + b(l ) and (~)-~)+~)~).
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The estimate (5 . 2) now follows by taking ~)=5(r) and ~)=(5(r)-~)+.
Q. E. D.

Using Lemmas 5.1, 2.2 and 2. 3 we can now determine the space time
integrability properties of the solutions of the free Schrodinger equation,
thereby generalizing Lemma 3. I in [9 ].

PROPOSITION 5.1. - Let r, p and 6 satisfy

let

Then the map 03C6 ~ U(t)03C6 is bounded from H1(Rn) to B03C1r,2)+lm(L~, BP2)
and a fortiori to B~,2)’

Proof - From Lemmas 5.1, 2.2 and 2.3 it follows that the map
p ~ is bounded from to for
2 s r  oo and ri 2 0 with 2/q = (~(r) - ri) +  1 and given by (5 . 7).
The result now follows by replacing ~p by (1- 0) 1 ~2 ~ and by taking ri = 1 2014 p.

Q. E. D.
We now turn to the derivation of uniform bounds on the solutions of

the NLS equation. For that purpose we need an additional estimate which
replaces Lemma 3.3 in the present case. We shall make use of the same
assumption (HI) on f (see (3.17) and (3 .18)) as for the NLKG equation.

LEMMA 5 . 2. - Let n &#x3E;- 3. Let/satisfy (HI) withp1 - 1 &#x3E; 2/n. Let r, p
and 6 satisfy (5. 5) and in addition 0  p  1, let (~(r) &#x3E; 1, b(r) sufficiently
close to 1. Then, there exists ~ &#x3E; and 5 with 0:5  1  ~ &#x3E; (  5(r))
and there exists v  1) such that, for any n and any
t ~ 0, and the following estimate holds

where M depends only on the norm of ~p in H 1.

Proof The proof follows closely that of Lemma 3. 3. For definiteness
we assume that 5(r)=l+~ 0  p  with E &#x3E; 0 sufficiently small
and we derive the estimate (5 . 8) with ~ ~ 1 ± Band 1 - E. We

decompose f as fl + f2 as in the proof of Lemma 3. 3 and estimate the
contributions of each term separately. For simplicity we continue the
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proof in the case of a single power p in f From Lemma 5 .1 and Lemma 3 . 2
(with ~ = 0) we obtain

with ~, = 1 + (7 2014 ~(l ), under the conditions 6  ~(l )  5(r) and (3 . 3),
(3 . 4), (3 . 5) (with ~ = 0). For each p satisfying (3 . 25) we have to make two
choices of 1 and v, corresponding to &#x3E; and , that ensure in addition to
the previous conditions that 5() = ~ ~ 1 :t Band 0  v   1 - E.
Eliminating v between 0  ~ 1 - e and (3.4) and (3. 5) yields (3.26)
and (3.27), the latter of which becomes

Upon substitution of /)., (3.3) becomes

We finally choose ~= 1 ~ E in the case  and b(l ) = 5(r) = 1 + E
in the remaining conditions (3 . 26), (5.10) and (5 .11) are then
satisfied.for those two choices of 1 and for 1 - p &#x3E; ~/s provided

Those inequalities are satisfied for E sufficiently small under the condi-
tion (3 . 25). Q. E. D.
We are now in a position to prove the basic uniform boundedness result

for the solutions of the NLS equation.

PROPOSITION 5 . 2. - Let n 2 3. Let f satisfy (HI) with p 1 - 1 &#x3E; 2/n.
Let (p E H1) be a solution of the NLS equation in ~([R, H-1). Let r, p
and q satisfy (5.5), p  1 and (5. 6). Then and the norm

of 03C6 in that space is estimated in terms of the norm of p in L 00(1R, H1).

Proof. - It is sufficient to prove the result for p &#x3E;- 0 and 5(r) &#x3E; I, 5(r)
sufficiently close to I. The result in the general case follows from the special
case by interpolation with uniform boundedness in Hi, the Sobolev ine-
qualities and the embeddings of the Besov spaces. Under the assumptions
made on f and ~p, it has been shown in Lemma 2. I of [9] that ~p satisfies
the integral equation ,._

with ~po = ~p(o). The integral in the right hand side of (5 .12) can be regarded

Vol. 43, n° 4-1985.



434 J. GINIBRE AND G. VELO

as a Bochner integral in H -1. Furthermore we know from a variation of
Lemma 3 . 3 of [9 ] that ~p E B~,2) for r, p and q satisfying (5 . 5), p  1

and (5.6). The difference is that here we use the more convenient Besov
spaces instead of Sobolev spaces and the more efficient Lemmas 3. I and 3 . 2

instead of Lemma 3 . 2 of [9 ]. In any case the proof of that property is a
simplified version of that of the present proposition, in so far as it does

not require any integrability property at infinity of the integral in the
right hand side of (5.12).
We define .. .....~

From the integral equation (5 .12) and Lemma 5 . 2 it follows that k satisfies
the integral inequality (3.39) with  defined by (3.40). From theore on
the end of the proof is identical with that of Proposition 3 .1. Q. E. D.

As for the NLKG equation,. the result of Proposition 5.2 is especially
relevant if f satisfies the following assumption :

(H2’). There exists a function V E rø1(C, !R) such that V(0) = 0, V(z) = V( 
for all z E C, f(z) = ~V/~z and, for some p3, 1 S p3  I + and all

V satisfies the inequality

In that case the L2 norm and the energy, now defined by

are conserved and the H 1 norm of ~p is estimated in terms of the L2 norm
and of the energy of 03C6 (see for instance Lemma 3.2 in [7]). Under the assump-
tions (H1) with p1 - 1 &#x3E; 1 &#x3E;- &#x3E; 6, and (H2’),
it follows from Proposition 3 . 2 in [9] that for any to E for any H 1 ,
there exists a unique ~p E L°°(~, H1) which solves the NLS equation in
~’(f~, H-1) with the initial condition Such solutions will

be called finite energy solutions. We can restate the previous boundedness
result as follows.

PROPOSITION 5 . 3. - Let n ~ 3. Let f satisfy (HI) with p 1 - 1 &#x3E; 2/n,
1 2 4(~-4)/[~-2)] ] if n &#x3E; 6, and (H2’). Let r, p and q satisfy (5.5),

p  1, and (5. 6). Then any finite energy solution of the NLS equation
belongs to B~,2) and its norm in that space is estimated in terms of
its (conserved) L2-norm and energy.
We now turn to the study of the time decay properties of the finite energy

solutions of the NLS equation and prove that such solutions satisfy the
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same decay properties as those of the free equation. For that purpose
we rely heavily on Section 5 of [77] from which we derive the following
intermediate result.

PROPOSITION 5.4. - Let n &#x3E;_ 3. Let f satisfy (HI) with p 1 - 1 &#x3E; 4/n,
(H2) and (H3). Let r satisfy

and let 2/q = 5(r) 2014 1. Then any finite energy solution of the NLS equa-
tion belongs to Lr).

1 ndication of proof The result is a slight reinforcement of Corollary 5 . 2
of [77] ] which, under the same assumptions, states the weaker property
that ~p E l q~((~, Lr) for 2  q’  q. The proof of this proposition is the
same as that leading to Corollary 5 . 2 of [77] with the only exception of
Lemma 5 .11 of [77] which has to be modified as follows : the assumption
on ko has to be reinforced to ko E 12(Lq) and the conclusion then states
that k E l2(Lq), with suitable minor modifications in the proof. Q. E. D.

Proposition 5.4 provides us with some time decay of finite energy
solutions. We now improve that decay by plugging the result just obtained
again into the integral equation (5.12). For technical reasons it is conve-
nient to proceed in two steps. The first one consists in obtaining the free
decay for the norms in Lr’ with 5(r’)  1.

LEMMA 5 . 3 . - Let n ~ 3. Let f satisfy (HI) with 1 &#x3E; 4/n. Let
~p E Hi) be a solution of the NLS equation in ~’(f~, H-1) (in parti-
cular, let f satisfy (H2’) and 03C6 be a finite energy solution). Assume that
~p E Lr) for 1  5(r)  b 1 for some ~ 1 &#x3E; 1 and 2/q = 5(r) - 1. Then

~p E L’’’) for 0 s ~(r’) =  1.

Proof - Since it is sufficient to prove the result for

5(r’) = V close to 1, say 5’ == 1 - ~ with ~ &#x3E; 0 and small. As in the proof
of Lemma 3. 3 we decompose f as f1 + f2 and estimate the contribution
of each term separately. We continue the proof in the case of a single
power p = /?i = 7?2 for simplicity. From (5.1) we obtain

Under the assumption (HI), by taking £ sufficiently small, we can ensure that

so that pr’ _ r’ « 2n/(n - 2)).
We interpolate the last norm in (5.18) between the norms of ~p in L2,

Hi and Lr for some r with 1  5(r)  ð1, as
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with

and  &#x3E;_ 0, ~ ~ 0. The result now follows from the integral equation (5.12),
by taking the norm in lm~(L°°, L~), estimating the free term by Proposition 5.1
and the integral by (5.19) and the Hardy-Littlewood-Sobolev inequa-
lity [12 ], provided

and

We choose ~ = 2 - (5’. The condition (5.21) then reduces to

and is satisfied by taking for instance ~(r) ==1+8. The condition (5.20)
then holds with  ~ 0 provided

which is satisfied for ~i 2014 1 &#x3E; 4/n and E sufficiently small. Q. E. D.

The second step in the improvement of the time decay is given in the
following Lemma. _

LEMMA 5.4. - Let n &#x3E;- 3. Let f satisfy (HI) with p 1 - 1 &#x3E; 4/n. Let
~p E Hi) be a solution of the NLS equation in ~(~, H-1) (in parti-
cular, let f satisfy (H2’) and ~p be a finite energy solution). Assume that
~p L’) for all r’ such that 0 S b(r’) = 2/m’  I. Then, for all r, p, q
and m satisfying (5.5), p  1, (5 . 6) and (5 . 7), B~,2)’

Proof 2014 It is sufficient to prove the result in the special case where 5(r)
is close to 1 and 6 2 0. The result in the region 0  6  1, ~(r) &#x3E; 1, follows
from that special case (with 5(r) &#x3E; 1) by the Sobolev inequalities. The

~ result in the region 0  1, 0  b(r)  1 follows from the special
case (with 5(r)  1) by interpolation with uniform boundedness in Hi.
The result for T S 0 follows from the result for 03C3 = 0 by the embedding
of the Besov spaces for fixed r. From now on, we concentrate on the
case where ~(r) is close to 1, 6 &#x3E;- 0 and p  1 (we shall take later 5(r)== 1 ± E
and 03C1 ~ 1 - fi for E &#x3E; 0 and sufficiently small).
The proof consists again in substituting the available decay into the

integral equation (5.12), and for that purpose we need additional esti-
mates of the integrand similar to but more complicated than those of
Lemma 5.2. Let r’ satisfy ~(r’)  1, ~(r’) close to 1 (we shall take later
5(r’) = 5’ = 1 - E). As in the proof of Lemma 3.3, we decompose f as
fl + f2 and estimate the contribution of each term separately. We continue
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the proof in the case of a single power p = p 1= p2 for simplicity. From
Lemma 5.1 and Lemma 3.1, we obtain

with A = 1 + r 2014 b(l ), under the condition 6  (5()  5(r) and (3 . 7)
which can be rewritten as

We impose ~(l )  1, ~(l ) close to 1 (we shall take later 5()=l2014s), and
we estimate the last two norms in (5.23) by interpolation between the
norms of 03C6 in L2, H1, B0r’,2 and BP2 in the following way. Since for p and 1
fixed, s is a decreasing function of k, we can always arrange for the points
(~,, ~(k)) and (0, 5((~ - 1 )s)) to lie on the same side of the line b(r) _ ( 1- p)~’
in the ( p, 5(r)) variables. If both points can be made to lie in the region
(5(r) ~ (1 - p)5’ (case 1), we interpolate the two norms barycentrically,
namely without using the Sobolev inequalities, between the norms in L2,
H 1 and B~ 2’ If both points can be made to lie in the region 5(r) &#x3E;- ( 1 - p)~’
(case 2), we choose (p - l)s = r’ and we interpolate the norm in B~,2
barycentrically between the norms in HB B~2 and BP 2. It follows from
(5~24) that case 1 occurs provided

and

In that case, we obtain from (5 . 23)

with

Similarly it follows from (5.24) that case 2 occurs provided

and

In that case, we obtain from (5.23)

with A _ ,u + vp and
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or equivalently, after elimination of 

We continue the proof assuming for the time being that the B?’,2 norm
of the given solution ~p satisfies the free time decay, namely ~p E 1m’(L 00, B~,2)
with 2/m’ - 5’ (This assumption is stronger than that of the Lemma, since
the embedding B~,2 c L’ goes in the wrong direction). Let ko and k be
defined by (5.13) and (5.14) and let xa be the characteristic function of the
(time) interval [0, a ]. From the integral equation (5.12), where we estimate
the integrand by (5 . 27) or (5 . 31) depending on the case at hand and the time
integral by the Hardy-Littlewood-Sobolev inequality [72] ] we obtain
in case 1

under the conditions

and

while in case 2

under the conditions

and

It follows then from (5.33) or (5.36), after taking the limit ~ -~ oo and
provided we can take v  1 in case 2, that ~p E B~2)’
We are then faced with the task of showing that for the relevant values

of rand p and for any value of p in the interval

one can choose ~(l ) and ð’ with cr  ~(l ) - ~(r) and ð’  1 such that :

. in case I, namely under the condition (5.26), there hold (5.25) and
(5 . 35), while ~ defined by (5 . 28) satisfies (5 . 34) ;

. in case 2, namely under the condition (5.30), there holds (5.29),
while v defined by (5 . 32) satisfies (5.37), (5.38) and v  1.
We recall that we are interested in the values b(r) ~/s,

we choose b(l ) = 5’ = 1 - E and we impose v  1 - e in case 2.
We first consider case 1. The condition (5 . 25) follows trivially from (5 . 39),
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(5.35) is obvious, and elimination of ~ between (5.28) and (5.34) yields
the condition

which reduces to (p - 1)n/2 &#x3E;_ 2 + £ in the worse case b(r) =1+8, and

therefore follows from (5.39) for E sufficiently small.
We next consider case 2. Now (5.38) is obviously satisfied for v  1.

The condition (5.29) reduces to

in the case 5(r) = 1 - E and to the stronger condition

in the case 5(r) = 1 + e. The latter is satisfied for p ~ 1 
- ~/e provided

which follows from (5.39) for E sufficiently small. By (5.32), the condi-

tion 1 - E reduces to

which also follows from (5.39) for E sufficiently small. The condi-

tion (5.37) becomes, after partially eliminating v with (5.32)

and reduces in the worse case ~(r) = 1 + E to (p - 2 + (1 + v)E
which follows from (5 . 39) and from 1 for f, sufficiently small.

Therefore, in both cases 1 and 2, all the relevant conditions follow 
from

(5.39). This completes the proof that p E lm(Lq, BP2) for 5(r) 
= 1 ± E, 6 2 0

and ~/s, with E sufficiently small, under the assumption that

l""(L 00, B~. 2). It remains to derive that assumption from those 
of the

Lemma This is achieved by using a minor variation of the method just

followed, taking now ~(r) ==-ð--Ír’) _ ~(l ) = 1 
- e and A = p = 0. In that

case the estimate (5.23) is replaced by

where we have used (5.2), the embedding B~,2 :::) L-;: and we have avoided

the use of Lemma 3.1, which does not apply since /). = 0. The last norm

in (5.42) is then estimated by Holders’ inequality as

with (p - 1)n/2 = (1 + ~)5(r) and the proof is completed as in case 1 of

the main argument. Q. E. D.
By putting together Proposition 5.4 and Lemmas 5.3 and 5.4 we
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obtain the following decay properties of the finite energy solutions of the
NLS equation for repulsive interactions.

PROPOSITION 5.5. - Let n &#x3E;- 3. Let f satisfy (HI) with p 1 - 1 &#x3E; 4/~
(H2) and (H3). Let r, p, q and m satisfy (5 . 5), p  1, (5 . 6) and (5r7). Then
any finite energy solution of the NLS equation belongs to B~.2)’
We conclude this section with some remarks on Section 5 of [11 ]. By

a systematic use of Besov spaces instead of Sobolev spaces and in particular
by the use of the estimates of Lemmas 3.1 and 3 . 2 one can generalize the
main body of the argument of that section leading to Corollary 5.2 to
a direct study of the time decay of the norm of ~p in for ~(r) &#x3E; 1, 5(r)
close to 1 and 0 - ~ = p + 5(r) - 1  1. This extension parallels the
treatment given for the NLKG equation in Section 4. The main steps are
a generalization of Lemma 5 . 9 of [77] ] analogous to Lemma 4. 5 above
and a generalization of Lemma 5 . 5 of [11] ] analogous to Lemma 4 . 6 above.
The proofs are similar to but simpler than those of Lemmas 4. 5 and 4. 6.
That extension however does not lead to any improvement of the final
result contained in Proposition 5.5.
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Note added in proof.
That result was subsequently extended to all n  3 and to interactions f

controlled by a single power p E ( 1 + 4/~, 1 + 4/(n - 2)) in the following
paper :

[6 a] P. Brenner, Space-time means and non linear Klein-Gordon equations, preprint, 1985.
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APPENDIX

Proof of Lemma 2.1. - We first recall the definition of Besov spaces [1 ]. Let 03C8 E 
with 0 ~ ~  1, tp( ç) = 1  1 and tp( ç) = 0 2 and define for any j E 7~

so that

and, for any ç, i~(~) + ~p j(~) = 1 with at most two non vanishing terms in the sum.
j31 1

For any 03C1 ~ R, 1 ~ r ~ ~ and 1  q  oo, we define the Besov space = 

as the Banach space

(with obvious modifications if q = oo), where ~ and are the inverse Fourier transforms

and 03C6j, and * denotes convolution in In order to establish (2 . 2) (where we replace jp
by v to avoid confusion) we shall estimate the norms of 03C8 * (exp (i03C91 t )v) and of 03C6j * (exp (icvi t )v)
in Lr by interpolation between the L2 norms, which do not depend on t, and the L°° norms.
Using the fact that

and

and the Young inequality, we obtain

and

Now

can be estimated by the stationary phase method as

and similarly

so that, for any 

and

where

Vol. 43, n° 4-1985.
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Now, for ~, 2 (n + 1)/2, the Supremum in (A. 9) is finite and reduces to

By interpolation between the pair (L°°, L1) and the pair (L2, L2) we obtain from (A.7)
and (A. 8)

and

with

and a(r) given by (2 .1). Taking the norms of (A. 11) and (A. 12) in l2 and choosing
~, = (n + 1 + e)/2 with 0  9  1 yields (2 . 2), with (A .13) reduces to (2 . 3). Q. E. D.
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