@article{AIHPA_1985__43_3_349_0,
author = {Gutkin, D.},
title = {Vari\'et\'es bi-structur\'ees et op\'erateurs de r\'ecursion},
journal = {Annales de l'I.H.P. Physique th\'eorique},
pages = {349--357},
year = {1985},
publisher = {Gauthier-Villars},
volume = {43},
number = {3},
mrnumber = {824844},
zbl = {0587.58015},
language = {fr},
url = {https://www.numdam.org/item/AIHPA_1985__43_3_349_0/}
}
Gutkin, D. Variétés bi-structurées et opérateurs de récursion. Annales de l'I.H.P. Physique théorique, Tome 43 (1985) no. 3, pp. 349-357. https://www.numdam.org/item/AIHPA_1985__43_3_349_0/
[1] , A geometrical approach to the nonlinear solvable equations, Lecture Notes in Physics, t. 120, Springer-Verlag, 1980, p. 233-263. | MR
[2] , , A geometrical characterization of integrable Hamiltonian systems through the theory of Poisson-Nijenhuis manifolds, preprint Milano Univ., 1984.
[3] , , , Reduction techniques for infinite-dimensional Hamiltonian systems: some ideas and applications. Communications in Mathematical Physics, t. 99, 1985, p. 115-140. | Zbl | MR
[4] , A geometrical characterization of completely integrable systems, in Proceedings of the meeting « Geometry and Physics », Florence, 1982, p. 257- 262. | Zbl | MR
[5] , , , , A new characterization of completely integrable systems, preprint Salerno Univ., 1983.
[6] , , . A geometrical approach to the integrability of soliton equations. Letters in Mathematical Physics, t. 9, n° 2, 1985, p. 85-91. | Zbl | MR
[7] , The Lie algebra structure of degenerate Hamiltonian and bihamiltonian systems, Progress of Theoretical Physics, t. 68, n° 4, 1982, p. 1082- 1104. | Zbl | MR
[8] . Les variétés de Poisson et leurs algèbres de Lie associées, Journal of Differential Geometry, t. 12, 1977, p. 253-300. | Zbl | MR
[9] , Poisson manifolds in mechanics, in Bifurcation Theory, Mechanics and Physics, Reidel Publishing Company, 1983, p. 47-76. | Zbl | MR
[10] , Cours de 3e cycle, Université de Lille, 1984.
[11] , Symplectic manifolds and their Lagrangian submanifolds, Advances in Mathematics, t. 6, 1971, p. 329-346. | Zbl | MR
[12] , Mathematical methods of classical mechanics, Springer-Verlag, New York, 1978. | Zbl | MR





