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Large time, small coupling behaviour
of a quantum particle in a random field

by

G. F. DELL’ANTONIO
Istituto di Matematica G. Castelnuovo, Universita di Roma

SuMMARY. — For a quantum mechanical particle in a suitable random
field we prove that all finite-dimensional distributions of extensive obser-
vables converge in the Van Hove limit to the corresponding distributions
of a classical Poisson process. In the classical limit this process converges
to a diffusion.

REsUME. — On démontre, pour une particule quantique dans un potentiel
aléatoire convenable, que toutes les distributions de dimension finie d’obser-
vables extensives convergent dans la limite de Van Hove vers les distri-
butions correspondantes d’un processus de Poisson classique. Dans la
limite classique, ce processus converge vers un processus de diffusion.

1. INTRODUCTION

The motion of a classical or quantum system in a random environment
is expected to converge to a Markov process under suitable scaling limits,
usually involving large time scales and small coupling. Results in this
direction appear in the literature under various headings, e. g. homogenei-
zation, method of average, diffusion limit, and require in general detailed
specifications as to what constitutes a random environment and which
are the observable quantities to be studied.

Formal results and applications can be found, e. g., in [/]. The subject
has also been considered in the mathematical literature; general results
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340 G. F. DELL’ANTONIO

can be found in [2], where one considers the case in which the interactions
with the random environment are a priori assumed to be weakly correlated
in time. These results can be viewed as a version of the central limit theorem
for a class of dynamical systems.

A more physical setting is one in which the random force field is assumed
to have weak correlations in space, to reproduce the properties of a rapidly
fluctuating environment. In this case, the fact that successive interactions
are weakly correlated in time becomes part of the proof (and indeed usually
the most difficult part); once this is established, the results follow modulo
(often very substantial) technical details. This more physical setting is
beyond the reach of the general results in [2], and proofs require the develop-
ment of specific techniques.

For example in [3] it is proved, under suitable but rather weak assump-
tions, that the velocity process of a classical particle moving in a random
force field converges weakly to a diffusion process in the limit in which
the force field becomes (locally) infinitesimal and the time scale is chosen
indefinitely large (Van Hove limit).

Here we prove a similar result for the motion of a quantum particle in
a random potential field.

As in the classical case, convergence will hold only for a restricted class
of observables, in particular for bounded continuous functions of
momentum.

Results in this direction are contained in a germinal paper by
L. Van Hove [4]. Important steps and proofs are in [5], [6]. The limiting
process is here a Poisson process, with transition amplitudes depending
on Planck’s constant #.

It is a rather obvious question to inquire whether the results of [3]
for the classical case can be recovered in the classical limit. This is indeed
the case; in the last section of this paper we shall briefly indicate the way
in which a proof is given. A full proof will be contained in [I0].

It should be noted that the results we present here for the quantum case
are obtained under conditions on the force field which are stronger than
those of [3]. The results themselves are moreover weaker than their classical
counterpart, in so far as we only prove convergence of all finite-dimensional
distributions rather than convergence of processes. The assumptions are
stronger both because the force field is taken to be potential — this seems
unavoidable in Quantum Mechanics —and to admit moments of all
orders, with suitable bounds in terms of the moment of order two. Some
restrictions on the bounds can be lifted by more accurate estimates, but
our method of proof does not exploit enough the details of the quantum
mechanical evolution on the space-time scale characteristic of the problem.
In the classical case, many estimates depend on a rather detailed description
of « most » trajectories; that the Poisson process of the quantum case
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A QUANTUM PARTICLE IN A RANDOM FIELD 341

converges as a process to the diffusion of the classical case suggests that
also in the quantum-mechanical setting it should be possible to have
a better control of the « motion of the wave packet » for most configurations
of the force field.

It seems however that the main drawback of the method presented
here, both in terms of assumption needed and of results which can be
obtained, is to be found in the fact that we are able to use only a very modest
amount of probabilistic techniques. In particular we lack the inequalities
for conditional expectations and the resulting tightness of a suitable family
of probability measures, which are the main tool in the analysis given in [3],
for the classical case.

A better strategy of proof could come from a more probabilistic approach
to the quantum-mechanical case, for instance a formulation of the motion
of a quantum particle in a potential field in terms of integrals over suitable
functionals of a Poisson process, as developed in [8]. In this case, it is
conceivable that a « small » set of trajectories will give the dominant
contribution in the Van Hove limit, and that the techniques developed
by Donsker and Varadhan [9] could put to use here.

We are indebted to Ph. Combe for some very suggestive discussions
on this possibility.

The content of this paper is as follows.

In this section 2 we give some further qualitative comments and the
description of the quantum mechanical evolution of a suitable class of
observables in a properly defined random potential field.

In section 3 we provide motivations and describe the limit Markov
process.

In section 4 we begin the proof of convergence of the averaged dynamics
when the potential is a Gaussian random field and outline the strategy;
further technical details and the completion of the proof are given in
section 5.

In section 6 we outline the proof of convergence for all finite-dimensional
distributions. We also outline how the proofs can be extended to cover
the case of random potential fields which are not gaussian. In section 7
we prove that the Markov process described in section 3, converges,
when # — 0, to the diffusion process of the classical case.

2. QUANTUM EVOLUTION
IN A RANDOM HOMOGENEOUS POTENTIAL FIELD

Let V(x) be the potential field. The motion of a quantum particle is
described by the Schrédinger equation
oy

ih= = (= A + V)i 2.1)
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342 G. F. DELL’ANTONIO

2

when A = Z (sz’ Y € L*(R% A D(— #2A + V), and for convenience we
1

have taken units of mass such that m = 1/2.

We shall consider only motion in R3, although all the results we state
also hold R", n > 3, and in fact some of the proofs in § 4, 5 become simpler.
Some crucial estimates in § 4, 5 fail instead for n = 1 or 2, as will be apparent
in the sequel. The result could still be true for n = 2, which is somewhat
a borderline case, but the method of proof we present here fails in this
case. Since % plays no role until §7, we shall set # = 1 until then.

In order that (2.1) provide a unitary evolution in L*(R3) it is sufficient
by Stone’s theorem, that — A + V be self-adjoint. If this is the case, let
U(t) be the corresponding one-parameter group of unitary operators;
one has U(f) = exp i(— A + V)t

Let B be a symmetric bounded linear operator on L*R>), i. e. a quantum
mechanical observable; its time evolution, in the Heisemberg representation
(which we shall adopt) is given by

B(t) = U(H)BU(~ 1) Q.2

Let R* e a+ V(a), (V(@¥)x) = ¥(x — a) be the standard representation
of the group of space-translations.

We shall denote by .7, the linear span over the complex numbers of
the observables which commute with V(a) for all ae R3. &7, is easily seen
to be a commutative C* algebra, which can be identified via Fourier
transform with L*(R3), the algebra of essentially bounded functions on R3.

Indeed, if A e.o/,,, one has

(AY)p) = A (p)

for some function A(p) e L*(R*). Here ¥ is the Fourier transform of Y.
We shall call this the Fourier representation of A,. Denote by Cy(R?3)
the class of continuous functions which vanish at co; Co(R?) is a subalgebra
of L®, closed in the supremum norm. Let o/ be the subalgebra of </
which has Cy(R?) as representative in the Fourier representation; .o/ is
then closed in the norm topology. The observables for which we shall
prove limit theorems are the symmetric elements of .</.

We recall now briefly the definition of a random field. Let Q be a proba-
bility space, with generic point w, endowed with the measure u. Let S be
a linear subspace of C(R?; R) (continuous functions from R? to R) and
let S f - V,(w) be a linear map from S to the linear space of random
variable (u-measurable functions over Q).

Formally, one writes

Vi(w) = J f(x)V(x, w)dx
where for a.a.wV(x, w) is a (generalized) function of x. In favourable
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A QUANTUM PARTICLE IN A RANDOM FIELD 343

cases, V(x, w) will be for each x a random variable. For a measurable
and integrable function on Q, we define

E%) = J Y(w)pu(dw)

We require that V be stationary and ergodic.
The field V(x) is stationary if

E(V(x1,*) ... V(x, ) = E(V(x; + @) ... V(x, + &)  (2.3)

for all ae R3, as elements of (S*)", S* being the dual of S.
One can choose Q in such a way that there exists a representation of R*
by unitary operators T, on L%, y) such that

TV, o), = V(x + g, ).

Ergodicity implies that every measurable function of the random field V,
which is invariant under T, Vg, differs from a constant function only on
a set of y-measure zero.

If E(V(x;) ... (V(x,) exist as continuous functions, then for each x € R>,
V(x) is a random variable, and one can choose a modification (on a set
of zero measure) of V(x) such that the resulting field is jointly measurable
in x and w.

These conditions are in particular met if V(x) is a centered (= mean zero)
Gaussian field of covariance %4(¢), where G is continuous. One has then
of course

E(V,) =0 VfeS

E(V,V,) = J T(e(»)G(x — y)dxdy

We shall state our results and give proofs only in the case in which V(x)
is a Gaussian random field. As will become apparent in the course of the
proofs, the results can be extended to more general random fields, provided
one has suitable a priori bounds on the moments of V.

On the Gaussian random field V we shall make the assumption.

ASSUMPTION A. — Gel!,Gel! (2.4

If | g, is the L! norm of g, we shall use the notation
IG|l = max {|G|;, |G }.

Having thus set our notation, we begin constructing the evolution of
the observables in .o/ under the influence of the random potential field V.

In the Gaussian case, it is not difficult to prove that there exists a set Q,
of measure one, such that, if w e Q,, H(w) = — A + V(x, w) is essentially
self-adjoint on C&(R3). This is sufficient to define a dynamics for a.a.w.
We shall however be interested in regularity properties of the average
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344 G. F. DELL'ANTONIO

dynamics. To obtain these, we choose to approximate first V(x, w) and
to define the dynamics by a limiting procedure. A natural choice would be

VI = V(x) exp (eV(x)) (2.5)
For all x, w, V{"(x, w) is bounded below, uniformly in x, w. If
exp (eV(x)) e LY(Q), it follows from the individual ergodic theorem that
for a.a., VI(-, w)e L3(R3), the space of functions which are in L2
when restricted to any bounded subset of R3.

Therefore there exists a set Q; < Q, w(Q,) = 1, such that, if weQ,,

— A+ VI(-, w) is essentially self-adjoint on CP(R?). Moreover
D(— A) n D(V(x))

isacorefor — A + Vi and exp i(— A + V{(-, w))t is strongly continuous
in ¢ for all w € Q, and strongly measurable in  for all ¢ (this can be proved,
e. g., using the Trotter product formula, since the pointwise limit of measu-
rable functions is itself measurable).

While (2.5) is in many ways a natural approximation, it requires much

machinery to prove that, for all e R, we Q,, the limit ¢ —» 0 exists as a
unitary operator.

We shall choose therefore the following approximate random field
V,(x) = V(x)e #V*® (2.6)

Since V(x, w) is jointly measurable in (x, w), so is V,(x, w). Moreover
by construction, V(x, w) is bounded uniformly in (x, w).

We will prove

LemMmA. — Foreach t, Athereisa set_ﬁ < Q,uQ) = 1,and asequence ¢,
&, — 0 when n — oo, such that, if w € Q, strong limit exp {i(— A+ AV )t}
exists. Call U,(t)(w) this limit. _

Then U,(t)(w) is unitary for all weQ and u-measurable. |

Proof. — We shall prove that, for every € LR?), one has

Jim E(ll(exp {i(— A+ AV} — exp {i(— A+ AV, ) W1 =0 (2.7)

Assuming for the moment the validity of (2.7), we complete the proof
of the Lemma.
Let {y;} be a denumerable basis in L*R?). From (2.7),

exp { i(—A+ AVt } Yk

is, for each K =1,2, ... a Cauchy sequence in L%(R3 x €, v), where
v = x uand y; is Lebesgue’s measure on R3. It then follows that, for
each K e Z" there is a set Q, u(Qx) = 1, and a subsequence ¢X | 0, such
that, for all we Qy, exp {i(— A + AVt } Y converges in L3(R?).
Let Q = mQK. Therefore u(Q) = 1.
KezZ*
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A QUANTUM PARTICLE IN A RANDOM FIELD 345

One can choose a sequence &, | 0 such that, if weQ,
exp {i(— A+ AV,)t } Y

converges in L%(Q), for all KeZ™" (the sequence {¢, | is a subsequence
of each { &V }).
Since exp { i(— A + AV,)t } is norm-bounded uniformly in e,

exp{i(— A+ AV, )t}

converges in L%(Q) for all i € L*(Q), as can be seen approximating y with
finite linear combinations of the y’s. Let y,(w) be the limit point. From (2.7)
it follows that  — y,(w) is linear and bounded, and in fact || z,(@) || = || ¥ ||
(all norms being L?(R*) norms) since the unit sphere is closed under sequen-
tial strong convergence.

Therefore for each ¢, A there exists a set Q = Q u(Q) = 1 (the set Q
depends in general on t, 1) such that, if w € Q, there exists a unitary operator
U, {w) which is the strong limit of exp { i(— A + AV, ) } t. Measurability
of U, () follows since it is the pointwise limit of measurable functions.

It remains therefore to prove (2.7), which in turn is equivalent to

Jimy E(J| ||* = Re (4o, gloariVony =0 (2.7)

We shall use the following identity,

- t ) th-1
eidip=A+AVe) — [ 4 Zi"/l"f dt, ... j dt, V() ... V(t,) (2.8)
0 0
n=1

where the series is norm convergent for all ¢ > 0 and w € Q, uniformly
in w.

We shall refer to (2.8) as « Dyson series ». Notice that the left-hand
of (2.8) satisfies the differential equation

[exp (iAt)-exp {i(— A + AVt } ]
= AV () [exp (iAt)-exp {i(— A + AVt } ] (2.9)

where V,(t) = ¢2'V,e ™,
The series (2.8) is obtained by iterating the integrated version of (2.9),
also called Duhamel’s formula, or « variations of constants ».
Substituting (2.8) in (2.7’) one sees that one must study the limit when
g, ¢ — 0 of

55l Jidn

n=0m=0
: L At B, Voltn) - .. Velt)Vilt) .. Vi(t)¥) (2.10)
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346 G. F. DELL’ANTONIO

(the exchange of the summation over m, n and integration over t, t; is
legitimate in view of the boundedness of the V,(o)'s).

The integrand can be expressed as a formal series

S St A
g7 T By, VIt i(r,) L VISR (2.11)
K,!... h,!

ki=0 hyn=0

Let ¢, = max (e, ¢'). Using the properties of the Gaussian integrals,
we shall prove that 3¢, such that, for ¢, < g,, the series (2.11) is absolutely
convergent, uniformly in ¢,. From this result (2.7’) follows, since it is easily
verified that (2.10) has no terms of order zero in ¢,.

In particular, one has

E(V(x )2+ L V(x,) 2t 1= Egmumgmz(xl—xz) L GE0) (2.12)

Pair

where 14 2K;=2K;;+ ZKU for all i=1..., 9(x;—x;)=E(V(x;)V(x))),
J#i
and the sum is over all unordered pairing of the points { x; } , each of which
is taken with multiplicity 2K; + 1. In (2.12), K,,,€ Z" is the number of
the times the point x,, is paired with the point x,,
By carrying out explicitly all calculations one verifies that each integrand
in the serie (2.10) gives a contribution which is bounded in absolute value

~ iK,+ ih,*'w . .
by ||A|2]| %], % ||¢||* independently of ¢, ... 1,. The inte-
gration overt, ... 1, provides for each such term a factor t"*™(n!) " *(m!)~ 1.

To prove absolute convergence of (2.11), uniformly in 0 < gg < &, it is
therefore sufficient to prove absolute convergence of the series

o0 00 + 0
n+m
Ii|"+m2 t"+m
n!m!

n=0m=0 Ki=0
© YK+ S, .
Bo)™ 7 o S Sty
. ﬁ“g“‘:’ . ' 'N{K,»,hj} (2.13)
1- e m*
=0

where N, », represents the number of pairing among n + m points x;
i =1 ... n+ m,eachtaken with multiplicity K;, and we have set K, , ; = h;,
j=1...m

To evaluate N, it is easier to count pairings in a somewhat different way.
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A QUANTUM PARTICLE IN A RANDOM FIELD 347

Let K;;i,j =1 ... n + m be the number of times the pair (i, j) appears
in the pairing. Obviously

2K; + 1 =2K; + ZK,-J-. (2.14)

j#i
The number of pairing is then

H QKh H(ZKH )"H (2.15)

i=1 (2K)!
Jj#i
We rewrite then (2.13) as

ZZZMItIIgH”“*”Z Z Zﬂ 2K, + 1)!
L L n!m! ; 7K”)|(”(Kij)!>”2

i,j=1 K;ii=0 K;;=0

i#j
j#i

QRK;—DM_ .~
TS‘&‘II%IIT‘ (2.16)

T K, + 1)
We now use the fact that, if (2.13) holds, then ——L——————)——— > 1,

2K)! n (Kij)!
Jj#i

and repeatedly Schwartz’ inequality to dominate the series in (2.16) by

(214] rnféni”)"*'"ﬂ (2K, + 1)!

Im!
n=0 m=0 nim: L= KU:O(ZKH)! HKU'
i#j
. _ Jj*i
go' 19117 2Ky — DI (2K, + Y2
oK K. (2.17)

where 2K; + 1 = 2K;; + K;;.
Now, (2K; + 1)! < 2% (K; + 1)1)?, and (2K;))! > (2K; — 1)!1)?, and
moreover
(2K; + 1!

Kii,Kij=0 (2K”)‘ | | Kij!
2K;i +Ki;j=K;

J#i

Therefore (2.17) is dominated by

L - 2001t é 1/2\m+n - ~ 2K, 1 i
Z Z ( | | H' |'|1 ) Z i ||€9|l’f' 5 Ki+1+5(K +U(K,~ + 1)m+,,
nim! (2.18)

n=0 m=0 Ki=0

— D2Ki+1
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348 G. F. DELL’ANTONIO

which is absolutely convergent uniformly in 4, t over bounded sets, for
B < 27| F ) a
We are mostly 1nterested in the random evolution of quantum observables.
This is again defined by a limiting procedure.
Let
Aot o) =exp [i(— A+ AVt]A exp [— i(— A + AV,)t] (2.19)

We have

THEOREM 1.—Foreacht, Athereisaset Q = Q, u(Q) = 1,and a sequence
&y | 0 such that, if weQ and Ae.«, strong léglogt A,, (t, o) exists. Call

A(t)(w) the limit. Then A — A (f)(w) is for each w a unitary isomorphism
of .o/ with a subalgebra of B(L*(R?)). Moreover A ,(t)(w) is weakly y-measu-
rable for each ¢, 1 and, for all ¥ e LAR3),

E(, A,() = lim (y, A,, (). (2.20)

n— o~

Proof. — A part from measurability and (2.20), all remaining statements
of Theorem 1 follow from Lemma 1, and moreover one has

A(D)(w) = (U,)AU; '(0))(w) .

To prove the remaining two statements, it suffices to prove that, for
any given Ae o/, Yy e L3(R?), 4, teR.

Jim Efl(A(8) — Ap (0O |12 = (2.21)

Indeed, from the strong convergence of A, ,;(f, w) to A,(t, w) for weQ,
and Schwartz’s inequality, one concludes that for every i eL?(R®)
(W, A,, () converges in L'(Q, ) to (¥, A,(t)) and this implies measurabi-
lity and (2.20).

The proof of (2.21) follows the same lines as the proof of (2.7). One
starts from the Dyson series, obtained by iterating the integral version
of the equation

dAe,l(t)
= iA[V{t), A, (t)]
ot

where A, ;(t) = ™A, ;(t)e ™™
The Dyson series for observables is

Afl) = A + Zi"z"fdzl J'"'Idt" Vi, ... Vit A] ... ] (2.22)
0 0

a norm convergent series in view of the definition of V,. The proof of (2.21)
given (2.22) follows then the same steps as the proof of (2.7) in Lemma 1,
and we shall not repeat the details here. O
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A QUANTUM PARTICLE IN A RANDOM FIELD 349

Remark. — Notice that Theorem 1 and its proof provide also an explicit
formula for E(¥, A,(tW). One has indeed

E(), €A (t)e™ B0y = Z i j tdtl
(4]

n=1

: Jn_ldtnE((l//, Vty), .. V(). AT ... T (2.23)

0

From the proof of theorem 1 it also follows

CoroLLARY. — For every choice of ¢4, .. ., t,, Athereisaset Q', u(') = 1,
and a sequence ¢, | 0, such that if e Q' and APe.o/ i=1 ... n, the
strong limit of A{) (t;)o...oA¥ (t,) exists and coincides with

AP(ty) o . o AP,
Moreover the latter operator is weakly measurable in , and
E((y, Ay ... AP Y) = lim (b, AL (8) ... AD () (2.24)

for all € L3(R?). O

Remark. — Since the A, ,(t, w) are uniformly bounded for ¢ > 0 and
weakly measurable, the operators A, ;(t) = E(A, () and A,(t) = E(A,(t))
are well defined and belong to 7, since the process is stationary.

Similarly, E(A§t;)o ... cA(t,)e /o, but it is of course different
from A)(t,) ... APA,).

We now prove that all these operators are in fact in /. Indeed one has

LemMa 2. — For all choices of { A? } and of { #; }, E(A{(ty) . .. APt,))e,

and is jointly continuous in the ¢’s. In particular the average dynamics
A — A (t) is defined in &/ and continuous in t. O

Proof. — We shall give the proof only for n = 1. A part from notational
complications, there is no difficulty in extending the proof to the general
case.

From (2.22) one obtains in the Fourier representation

«© n ' n—1
A, 0(p) = ZJ‘dtl ce J dt, Z Z ‘[exp <i ZPK(XK+1 — xx)
n=0 ° 0 h=0 perm K=1
-1

- iz PRt — o)) — iD(t;, — ti) })

K=1

“APE(Vi(xy) .. Vil .,))Hd3 ﬂd3, (2.25)
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350 G. F. DELL’ANTONIO

where p, = p, = p, and the third sum is over all permutations K — ig
such that t; > L if K<handt, <t ifK>h
The estimates given in the proof of Lemma 1 can then be applied to (2.25)

‘(there is an extra factor 2" in the estimates, coming from Z ; indeed this
‘ perm
sum corresponds to summing over the 2" terms in the multiple commutator
which appears in (2.22)) and they are uniform in p e R3.
Therefore A, ;(¢) converges to A,(¢) in norm (recall that for each w € Q;,
one had only strong convergence) and it remains to prove that A, ,(t) € /.
By the same estimates as above, the series (2.25) is absolutely convergent

uniformly in p, and therefore it suffices to prove that each term belongs
to .

Each term in (2.25) with k& # 0, n can be put in the form
B(p) = fK(p ~ VAR (2.26)

where K e L' n C (and depends parametrically on /, t), while the terms
with & = 0 or n (and therefore p, = p) are of the form

K.(p)A(p) (2.27)

where K, is a bounded continuous function of p.

Since A € ., clearly K; Ae .«/.

To prove that B(p) e .«Z, notice first that B(p) is continuous, since K e L'.
Indeed, for all ¢, |¢] > 0 and N > 0 one has

|B(p + & — B(p)| < U K(p — p)[A(p) — A(p’ — &))d°p’

|’ pI<N
j K(p — p)d°p’
|p'—pl<N

and this expression can be made arbitrarily small by first choosing N
sufficiently large and then |¢| sufficiently small, using the continuity
of A(p). To prove that I}m B(p) = 0, notice that, since A € </, given ¢ > 0

€ .
there exists M, such that |A(p)| < ——if |[p| > M,, where | K|, is the

+2 A

L2-norm of K. 21K,
Also, since KeL!, 3N, such that j K(_)d3z<2 NG where
[|A [l = sup |A(p)]. |21 >N, Al
p

One has then, for lpl >N, + M,

<é

| B(p)| = J(L’ - PK(p)p | <

A(p — pK(pd*p’

‘| <N

N ™

|p
since, if |p'| <N, and |p| > N, + N,, then lp—p'| > M, O
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It follows from Lemma 2 that A — A,(¢) is a linear continuous map
of o into itself. It is given explicitely in (2.23) as a norm-convergent power
serier in A, but it is in general not differentiable in ¢; even for those A € &
for which differentiability can be proved, no simple equation will be satisfied
by A,(2). _

We shall however prove in §4 that A,(t/A%) converges, when A — 0,
to a Markov semi-group with continuous parameter t.

3. SOME PROPERTIES OF THE EVOLUTION
IN THE LIMIT ¢=1/A%, 10

We shall study in § 4 the limit ¢ = t/A%, 1 — 0 of the averaged dynamics
and of all correlation functions.

Here we provide some motivation to indicate which is the limit to be
expected, and we study the convergence of a sequence of Markov
processes T, somewhat related to the averaged dynamics.

A part from giving some hints at the mechanism which will be put
at work in § 4, we give here also some estimates which will be of use in the
sequel.

As a preliminary we shall study the operator

A () = €2U (NAU] Y(t)e
Obviously ‘
E(A;(1)) = E(A (1)
Formally, A,(t/4?) satisfies the equation
d . 1 - 1. .
i A = 72 Ho AsOT + [E v, A).:' 3.1
where Hy = — A

This relation is only suggestive, since we have not proved that there
are weQ for which A(t, ) is differentiable, even if only weakly.

We write formally

At/2%) = A1) + JAD®E) + ...
and substitute in (3. 1), equating terms of the same order in A. This leads to
[Ho, A%7)] =0

) ©)1 =
[Ho, AV(7)] + [V, A9)] = 0 3.2)

d
i— A = [Ho, AD] + [V, AV
T

The first relation in (3.2) is compatible with A°Xz, w) € o/, for all w — Q,,

although it does not imply it. Due to the ergodicity of the process, one
has then A°)t, w) = E(AXt)) for a.a.w.
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From the second relation in (3.2) we conclude then, at a formal level
Al () = ifo [V(s), A©Y7)]ds (3.3)
(since A“(0) =0 Vn > 1).

Equation (3.3) is understood in the sense that, for all (Z) for which the
integral converges for a.a.p,

(A"(z, w)p)(p)=

1
j Al W)AO)(p) ~ AP NP (3.3))

where 1 is the Fourier transform of ¥ € LAR?) and \~7(p, P’ ; w) is defined
by (¢, Vix, wy) = f PPN P N(p, p'; @) for @, JeC.

We now substitute (3.3) in the third relation in (3.2), again formally
since we do not control the domains of the generators involved, to obtain

@2n)*

id%A‘o)(T) = [Ho, A¥(1)] + i[Y(r), r[V(o), Ao(t)]do'] (3.4
0

We integrate over Q, and use the fact that, due to the stationarity of the
process, E([Hy, A®(7)]) =0, and moreover A“Xt, w) is independent
of w on a set of measure one. One obtains

diE(AO(T)) = rE[V(r), [V(0), BAO(®)]1do = (£ - A®(x) (3.6)
.at 0
where

1\? .
(ZLA)p) = <§> Jé(p"‘ - )% p — p)AP) — Alp)d®p’  (3.6)

with 4(&) = E(V()V(0)).
Therefore,
11113 E(A(t/A) =exp{ — %7} A =TA 3.7

Remark. — This heuristic argument would suggest that a stronger
result should be expected, namely that there is a set Q; = Q, u(Q,) = 1,
such that

AT/, 0) —e” A — 0 (3.7)
for all we Q,.

We do not know if (3.7’) holds in a weak sense, with Q, depending
on 7 and on the vectors in L%(R®) which enter in the definition of weak
convergence. Certainly (3.7’) cannot hold in a strong sense, since it would
contradict the result we establish for

« E(A(t/A%)B(1,/4%), T>Ty.
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The derivation of (3.7) given above is at best heuristic, as evident from
the remark above. Still, (3.7) is correct, as we shall prove in §4.

We shall do so by approximating E(A;(t/4%) by the solution A,(1) of
a suitable linear equation.

In §4 we shall prove that E(A,(z/A%) — A,(t) converges to zero in the
topology of .2/ when 2 — 0. Here we shall define A (r) and prove that,
again in the topology of .o/, A,(tr) converges to e”“*A when 1 — 0.

We begin by noting that

E(A;(t/2%)) = E(A(1/4%)

when A;(t/A%) = exp (iA - t/A*)A(t/A*) exp (— iAt/A*) and that, according
to (2.23)

E(A(x/2%) = A + AZJ

0

T/A2

do JddvE [V(o), [V(v), E(A;("))]] + Dy(r) (3.8)

where a2

D,(1) = lZJ’

dGJ dvE([V(0), [V(v), (Ax(v) — E(A;(0D1D)  (3.9)
0 0

From (3.9) one should expect D;(t) —» 0 when 2 — 0, due to some mild
mixing properties of the process and the local decay of ¢"**Ve™"(x) for
large t. Indeed, this is what is proved in the classical case, using a priori
estimates for conditional expectations and some information on the
properties of « most » classical trajectories. We shall prove in §4 that
D;(r) — 0 in the topology of .«/. Motivated by this, we define A (1) to
be the (unique) solution of

/A2
A=A+ J/ dvj doE[V(a), [V(v), éz(lzv)]] (3.10)
0 0

Notice that A (1) is « sure », 1. e. it does not depend on w.

Eq. (3.10) can be solved by iteration, which prov1des a norm convergent
series for all A, t. The solution is therefore unique, and this proves that
A (1) € 4, since, if A"(7) is a solution, so V, A 1)V, for all aeR3.

In the Fourier representation one has explicitely

éz(ﬁ([_’) = A([z) -+ iz 21)3 Jdi‘lK J‘Tds J‘sdo_[eilpz_l(z)(s;—za>+

< >]g( — K)- (A0)(p) — A,(0)(K) (3.11)

Let % be defined as in (3.6) and let exp — £t be the semi-group it
generates (the existence of exp (— £t) is part of the proof of the next
lemma).
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One has then

LEMMA 3. — For all Ae.Z and © — 0, A(t) — e"¥". A converges to
zero, when 4 — 0, in the topology of .. O

Proof. — From (3.11) it is easily seen that | A(f) | < e’ for some 7, > 0.
We write (3.11) in integro-differential form, taking the derivative with
respect to 7, and then take Laplace transform.

For u > v,, define

Ay = J e A (n)dt
From (3.11) one has ’
A(p) + 1AzUp) = (% .,)(p) (3.13)
with

(gl,uf)(l_)) =

1 A

(27[)3 A4H2 +(,u2—K2)2
As a linear operator on Cy(R*), 4,,, is accretive for all x> 0. Indeed,
if f e Cy(R?), let p, be a point at which | f | reaches its maximum (all our
function spaces are real).

Let I, be the element of C§(R?) defined by I(g) = g(po)f(po). We prove
that [(%f) < 0. Indeed, notice that f(p,) =0 = f = 0; assume then
Sf(po) #+ 0. Then

149 1) = f(go)fd%?(g - K(f(K) — f(po))

(3.14)

Jd3K€?(1g—E)(f(E)—f(l_’))

A
pEean (K? = P2

Since, by definition of po, f(po)(f(K) — f(po) <O VKeR’, one has
indeed 1% f) < 0 VfeCyR>.

Since ¥ is bounded, range (¢4 + 4,) = Co(R?) for A, sufficiently large.
We conclude that ¢, is accretive for every u > 0. Therefore its spectrum
is contained in { ¢|Re £ <0} and we can define, for all u > 0,

Aulp) = (Gap — D71 A)p) (3.19)

Clearly A;,, = A;,, at least for u > y,; since A;,, is analytic for Re p > 0,
it follows that A,(z) has a Laplace transform for 4 > 0, and A, =A,,
Vu > 0. Let A,(p) be defined by A\(p) = (&L — u- I)"'A(p); since £ is
accretive (the proofiis given as above) A ,(p) is well defined for all i, Re >0,
and is in fact the Laplace transform of e*#'A.

From (3.15),.(3.14)

(1= 90 A0 — Awp) = Gau — L)Aw(P) (3.16)

The right-hand side converges to zero in the topology of «/; since, for
u>0,(uI—%,, is bounded away from zero uniformly in 4 > 0, we
conclude A; , — A, =, 0 for all x>0, uniformly in 0 <6 <pu<N.
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From this it follows that A () — e?'A — 0in the same topology. O

Some information on the structure of the limit semi-group T, = e**

is provided by the following

LemMMA 4. — The semi-group T, is a contraction semi-group on .2/.
It is reduced by each ball B : {p| |p| < a} and defines on each sphere
S :{pl Ip| = a}acontraction semi-group. On each sphere, the constant

function is left invariant by T,

Proof. — We have already proved that % is accretive. Therefore T, is
a contraction semi-group. Next, we notice that, if f € Co(R?) has support
contained in {p|a < |p|< b} for some a, b > 0, then T,f has support
contained in the same set. This is evident from the definition of %, and
the fact that ¢'¢ f is given by a norm-convergent series in ¢.

Consider now on C(S3}) (continuous functions on the sphere of radius
one in R?) the family of operators

(L) p) = aJ

S

?df(?a(f(, PIWK) — h(p)) (3.17)

where a > 0 and 9K, p) = 9aK — ap).
One verifies easily that, for all f e Co(R?)
(Zfp) =Ilpl ($|p|f|p|)(ﬁ) (3.18)

where /(p) = f(ap).
The operators £, are accretive for every a > 0. Let T be the associated
semi-group. From (3.18) one verifies that

T, = J daT® (3.19)
@

in the natural decomposition of Cy(R*\0) as a subspace of J daC(SY).
®
Constant functions on S{> are left invariant by T since £,-1 =0. []

Assume now that ¥, satisfies for every a > 0 a strong form of Doeblin’s

condition, i. e. for every peS®, B = S, j?f,”)( 2, K)dK + 0 for some
B

neZ* (here 9 p, K)= J{%,( 2Ky ... 9K, ,,R)dK, ...dR,_,). A suffi-

cient condition for this to hold is that %(£) has compact support, or exponen-
tial decay.
One has then

CoRrOLLARY. — Under the condition stated above, the constant function
on S is a global attractor for the semi-group T’. Given any function

Vol. XXXIX, n° 4-1983.



356 G. F. DELL’ANTONIO

geC,, T,g converges when ¢t — oo towards g, where g is a function only

of p], and ?(IPI)=Jg(E)5(IKI — |p Dd’K.

Proof. — Under the stated conditions, 1 is the only eigenvector of T
to the eigenvalue zero. The corollary follows then from standard properties
of contraction semi-groups. O

Remark. — The physical description behind Lemma 4 is that the random
force field, in the limit in which A — 0, does not alter appreciably the
energy of the particle, even if it acts for a time of order 2~2. On such a
long time scale however the momentum of the particle undergoes changes,
in such a way that, on a still longer time scale (t — o0), its distribution
becomes uniform on the mass shell.

4. CONVERGENCE TO THE MARKOV LIMIT:
CONVERGENCE OF DYNAMICS

Let A ,(¢)(w) be defined as in Theorem 1; in this section and in the following
we shall study the limit of

E(A(z,/22) ... AP(x,/A%)

when 1 — 0, when A%e«/i=1...nand 1, =1, > ... > 1, In this
section we consider the case n = 1, and prove
lim E(A,(t/A%) =T, A “4.1)

where T, is defined as in (3.7), (3.6).
This will be the content of Theorem 2.

Before stating the theorem precisely, we perform some preliminary
operations and prove two lemmas which will be used in the proof of
Theorem 2.

From (3.8), (3.10) it follows that, setting

B,(1) = E(A,(1/4%) — Ay(7)

JOo

/A2 4
B(1) = 4? dGJ dvE([V(0), [V("), B,(2*W)]]) + Dy(1)  (4.2)
0

where D,(7) is defined as in (3.9)

rt/A2 o
Di0)=2| do J dvE([V(o), [V(v), A;(v) — E(A,())]D  (4.3)

JOo 0

If one can prove that D,(tr) — 0 when 2 — 0, then (4.1) follows from
Lemma 3 and an application of Gronwall’s inequality.
If one had for the present quantum-mechanical setting the definitions
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and a priori estimates, one has in the corresponding classical situation,
one could provide a « probabilistic » proof of (4.3). Since we lack at the
moment these instruments in the quantum case, our proof will be ana-
lytical, and based on the Dyson expansion given in §2.

We believe that a more straightforward probabilistic proof exists, but
we have been unable to find it. See however the remarks at the end of § 1.

In view of the structure of the integrands of the terms of the Dyson
series (see e. g. (3.11), and in particular of the occurence of terms of the
formexp i { ZK2(t,,, — 1,,,_,) } , coming from the e in V(1) = e~ Mo'Vetlo,
the following two lemmas will be important in the proof of (4.1).

LemMmA 5. —Let% e L, (RY), Ge L,(R"),andset|| ¥4 || = max(|¥ |, | g [1)-
Let Q be any symmetric N x N matrix, and for 0 < M <N let Q™ be
any of the M x M matrices obtained by deleting in Q, N — M rows and
the corresponding columns, with the convention Q@ =1, Q™ = Q.

Then there exists a constant C > 0, which depends on v but not on N,
such that, forall 0 < M < N

N
je“"’QP@wl) . %py) H dpi < V|G| (et Q)2 (4.9)

N
when (p, Qp) = Z Qifpi-p)) pieR". O
ij=1

Remark. — It is easy to see, considering the case N =1, and Q =¢-1,
that the statement of Lemma 5 is closely related to the local decay of wave
packets in Quantum Mechanics (see e. g. [7]).

In the case N > 1, some information is contained also about the relation
between spreading of the wave packet and motion of its « center of mass »;
since this relation is also relevant to define multiple scattering, our proof
probably contains in a hidden form an estimate on the probability of
time-correlations due to multiple scattering. A better understanding of
this relation could probably be used to improve effectively on the analysis
given in this §, and to make direct connection with the proofs which have
been given in [3], for the classical case. It should then also bring about
an understanding of the deep reasons for the existence of the classical
limit. We hope to come back to these points in the future.

Proof of Lemma 5.— We begin the proof by considering the case N = 1,
v=1
" We must in this case estimate

jexp (iZKA)%(K)dK = S(%) (4.6)
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Obviously | S()| < | ¥ |, for all L€ R. Also, since % e L,, S(Z) is the boundary
value, when Im z | 0, of the function

J exp (izK2)%K)dK = S(z)

defined and analytic in {z|Im z>0}.
Therefore

S(1) = lim J exp (i1K? — eK2)%(K)dK

= lim Jf exp (iAK? — eK?)dK fdx%(x)e"‘x 4.7)

Since e”**e L (R) for every ¢ > 0, and %eL,, we can use Fubini’s

theorem and conclude

S(l) = 81_1%1 jdxg(x) deeinHAKZ—aKZ

—ix?

P 1 2
= lim J'dxg(x)e‘“““)JvdK exp i(. /A + ieK + —l—x)
e70 2 /A + ie

where we denote by (/4 + ic the square root of A + ic which has non-
negative real part.
For all ¢ >' 0,

2

2 -2
—ix
l Vx.

= <
a0 T i)

‘ —il—c¢
Xp—5——>-X
P+ )

Therefore

S()| < lim j dx | %9(x) |

JdK exp{ (MK o= J}

1 2
For all ¢ >0, xeR, exp i<\ /2 + ieK + —x) € L,(dK). The
A+ ie

integral on K can be computed explicitly, to give

2
deexp{<«/l+lsK+ 0 ) }:n”z
+ ie

We conclude that, for 1 & 0

e+ ii |V?

&2 + 12

1/2

1SA) < /xl% 1 lip | = /1% @4.8)

For 4 = 0, inequality (4.8) is obviously satisfied.

e+ il
F-I—/t
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One has therefore

JeiKZ@(K)dK \ < Jm|g 2

*G(K)IK ‘ <9 .99

and therefore
‘ Je“‘”?(K)dK ‘ < /7| % || min(1, A~ 1/?)

We have thereby proved Lemma 5 in the case N = 1, v = 1. The case
N = 1, v arbitrary follows immediately. It suffices to notice that

Jd“Kexp{(//l——i-lEK+ — )2}

Y 2
= HJdKS exp{ (,/A+ ieK + xs> } (4.10)
A+ e

s=1

We now prove Lemma 5 for arbitrary N, v.
Since Q is symmetric, one can find an orthogonal transformation T
and real number 4, ... Ay such that

N
f’“’Q"’g(p) - Ypy) Hdp, f MEG0LK) %@)Hdﬁi

where 1,(K) = Z T,.K,

s=1 - ~
Since by assumption the product 4(l;) ... %(ly) is an element of L‘(RN ")
and its norm is || % || since T is orthogonal,

Nv

jei(BQB)?(pl) oo HpImdp; < (/1) || G|Y | det Q|72 (4.11)

N
<recall that |det Q| = H | 4; ] )

Let now Q™ be the M x M matrix defined by Q" =Q;; if i, j=1 ... M,
Q- be the (N M) X (N — M) matrix defined by Qn-_uy;; = Q; if
b j=M+1 ..,N, Q¥ be the M x (N — M) matrix defined by
Q;%LM)U: Qlj ifl == 1 PP M

j=M+1...N.

Vol. XXXIX, n° 4-1983.



360 G. F. DELL’ANTONIO

Then

N
{e"‘ﬂQﬂ@(m . Ypy) H dp;

= j APys1 - dpxB(prysy) - .- Fpy) exp { i(gQN‘Mg)}

'Jd}?l ... dpy exp {i[(pQ™p)

+ (PQN-wp) + (PQN-w)P)] } %) - Flpw) (4.12)
~ After a linear change of variables p; > p; + I({p}) i=1... M,
where [; are suitable linear homogeneous functions of the p;, j > M and

using translatlon invariance of Lebesgue measure, one can apply 4.11)
to obtain

‘jdﬁx . dPM exp { (Pv [QM + Q%) M) ( %) M))]P) }g pP1) - Q(EM)

<(ﬁ)7n%n“:ldet QM |2 (4.13)

uniformly in py.q, ..., px
- N
Since Jrl ?(EMH) ?(QN)l H dp; = |§|T‘M, one has from (4.12)
i=M+1
P0Y(p,) .. PN)HdP,’ 2 1N | det Q™ |~

for all 0 < M < N, where Q™ is defined in the statement of the theorem
(the N — M rows which are deleted can always be defined to be the last
ones). |

The proof of Lemma 5 applies verbatim to provide

Lemma 5. — Let notation and assumptions be as in Lemma 4. Let
moreover F;e L*(R") i=1... N;, N; < N. Let I(pji=1... N; be
any linear homogeneous comblnatlon of the p/'s. Then, for all 0 < M <N

{®0G(p)) ... Gp)FL(p) - .. F,(n(p)dDx - - . dpx
SCNIFylp oo Byl |l %N det Q™72 [0 (4.14)

Finally, since for every 0 < a < 1 and a, b > 0 one has min (a, b) < a*b* "%,
one has the following corollary
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COROLLARY. — With the notation of Lemma 5’, and QM™?, Q> any
two reduced matrices, one has

Jews?(gl) o Dp) I_[ F(l(p)) Hdv ; 1
i=1

i=1

(1—ov

<«:NHlF,-L,o||<f||N|detQ‘M“|‘7|detQ(Mz)f2 (4.15)

forany 0 < a < 1.
In particular, choosing M; = N, M, =0

N N1 N N! w
Jef‘ﬂ@ Hé@i) HE(L(L)) pri) <cN ﬂ Il 1% 1N det Q] 2

i=1 i=1 i=1 i=1 (416)
forall0 <o < 1. O

We turn now to the proof that D,(t) -» 0 when A — 0. We use in (4.3)
the Dyson series (3.11), to obtain

= 1/42 tan-1
Dﬁ):ZP"J d:l...J A, B V() .. [Vta) Al... 1. (.17)

0 0
n=2

where E’ stands for integration over the Gaussian random field, with
the prescription that all terms containing E(V(t,) - V(t,)) as a factor should
be dropped.

It will be useful to have a graphical description of (4.17); this will give
a convenient bookkeeping prescription. We shall give it here for the case
in which V is a Gaussian random field; it can be eéxtended to cover the
non-Gaussian case, provided V has suitable mixing condition (See § 6).
There are 22" terms in the n" summand in (4. 17) (a factor 2 for each commu-
tator); each of them by the rules of Gaussian integration is expressed as
the sum of (2n — 1)!! terms (number of possible pairings; we neglect for
the moment the prescription which distinguishes E’ from E).

To each of these 22"-(2n — 1)!! terms we associate a graph, obtained
with the following prescription.

Suppose one is considering the term

Vi) ... V(@ AV, ) - V()

Im+1

Mark on the real line 2n points, and label them ¢; ... t;, , from left to
the right.
Connect now pairwise with arcs y; in the upper half plane, i =1 ... n,

the labeled points. There are (2n — 1)!! ways of doing so; each of the
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graphs so obtained corresponds in a natural way to one of the 2"(2n — nn
terms in (4.8).

We shall also agree to put a mark = in correspondence to the position
of the observable A in the term considered. If, e. g., one is considering the
term V(#;)V(¢3)AV(t,)V(t,), one of the possible graphs will be

P /7/<<_\ P
ty K1 otgke oy, k3,

It is obvious, from the multi-commutator structure, that on the right of
mark =, the times appear in increasing chronological order (from left to
right), while they are in decreasing order on the left of x.

We shall use the following notation: y; ; is the arc connecting t; with ¢;
(so that y;; = y;)ox is the interval (t., t. . ), of length |oy|; s(y) (the
shadow of v) is the interval between the vertices of y; | I"|, the order of T,
is the number of arcs in T

With this notation, the prescription X’ in the definition of Dy(t) is the
following: the graph I' cannot contain the arc 7y,.

Consider now a graph I' of order n. Let C- be the corresponding term
in D,(t). One has

2n—-1

Crp)= i‘).Z"J drt jd3K1 . stKz,,_l exp{i Z K2(t;, — tim_l)}
17 22 —
. I—[ G(1(K)) H O(LAK)A(L(K)) (4.18)

1 1

where ;e R, L,;eR3, LeR? are linear combinations of the K’s and we
have used the notation

I={t|C=>t > ... >t2,,>0},d;=dt1 coodty

It is convenient to regard K, as the momentum associated to the oy,
and /; as the momentum associated to the arc y;, while L is the momentum
of the interval which contains the mark . Then the /; and L; are completely
determined by the prescription that momentum be conserved at each
vertex of the graph, and p be the momentum associated to the external
lines.

Annales de !IInstitut Henri Poincaré-Section A



A QUANTUM PARTICLE IN A RANDOM FIELD 363

For example, in the graph of Fig. 1 one would have
LK) =p—-K; —K; +K;
LK)=K; -K; —K;+p
L(K)y=p—-K,;, +K; —K;
L(K) = K.
With the change of variables
I(K) = u; i=1...n,

and performing the integration over K,, m=n+1, ...,2n — 1, one
verifies that Cr has the form

(4.19)

J G uy) .. Gu )ALy, ... du, (4.20)

i. e. a form suitable for the application of Lemma 5.

The matrix Q in (4.20) can be obtained according to the following
prescription (see also [6]).

For the given graph I', order the arcs of I' according to the order of

their left vertices.
Then one has
Qij = 2 | ok |
4.21)
Ked;

My ={K|og = s() v s(r) )

Also, if '™ is a graph obtained from I' deleting N — M arcs, the corres-
ponding matrix Q™ can be obtained from Q by deleting the corresponding
rows and columns.

We now return to (4.2), (4.3) and write them in a form which is conve-
nient for our later estimates. We shall then give a « graphical interpretation »
of the new setting.

Writing B, for B,(7), and with the agreement that from now on conver-
gence is in C(0, T ; &/), we rewrite (4.2) as

B,=K,'B,+ D, 4.2

where K; : C(0, T; o) - C(0, T ; o) is defined by the first term on the
right hand side of (4.2).

Similarly, we write now s

(VieA)s) =471 JSA [Vi(0), A(0)1do (4.22)
0

where as usual V(o) = ¢i?/*"Hoye~io/#Ho 5 that K, as defined in (4.2),
can also be written

K, A =EV,oV,oA) or.inshort, K, =E(V,0V,0)
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Define now Z,=V;oV,0 —E(\V,0V,0). (4.23)
One has then, for all A € B(H),
A, —EA)=VoA+Z-A (4.24)
D; = E(V,2V,°(A; — E(A)) (4.25)
Using repeatedly (4.2'), (4.24), (4.25), one has
B1=K10BA+ZW(1,,)0E(A1) (4.26)
n=1
where Wi cA=EK,oZcA) for Aec.o/ 4.27)
(we have used the fact that odd moments vanish).
Writing .
W;_EZW(A") (4.28)
n=1
as an operator on C([0, T], &), one has finally
E(A;) — A, =U,-W,EA)) (4.29)

where U, f = ZK',{ - f and therefore
n=1

E(AA) - él = (1 - UAWA)_IUAWAé/I (4-30)

Since U; is bounded uniformly in A for 0 < A < 4y, and ||A;|| < C
Vi:0< A< A (here [|A; |l = 0sup [lA;(0)]]), we are left to prove that
NS

W, —» O when A — 0. Indeed, for 4 sufficiently small, 1 — U,W, is inver-
tible, and (4.30) allows then to conclude that E(A;) — A, — 0 when
i — 0.

We shall prove that W, — 0 by first performing a suitable resummation

in (4.28), to write .
W, = ZVWM (4.31)
n=1

where the VNV(‘,,) will be defined presently, and then proving convergence
to zero of each W, and uniform convergence of the series in (4.31) for
0< A< .

The graphical representation of the operator W* will be useful. It is
straightforward to see that, from the definition given, (W” o A)(p) is the
contribution from graphs of order 2n, such that for no integer m < n
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the first 2m vertices (in chronological order) are disjoint from the remaining
2(n — m). We call such graphs « tight ».
As a preliminary step we prove

LEMMA 6. — The contribution from a tight graph vanishes in the limit
A — 0. O

Proof. — For any graph I of order n which is tight, let T™ be a reduced
subgraph with the following property: for all 0 < ¢ < 1/2 one has

(det Q)™ 5(det QM)~ 12 s e LY(I7,,2) (4.32)

where QM is the matrix associated to the subgraph I'™.

Such subgraphs always exist for a tight graph; it suffices, e. g., to consider
the subgraph composed of only one arc, which either intersects or graph-
shadows some other arc in T.

From (4.14) one concludes that the contribution Cr from I' can be
estimated by noticing that

f EPPG(p) .. Up AU, .. dp,

3 3
-z —=(1—a
<2CH|[A ]| [det Q| 7 |det QM| 2 " (4.33)

foral 0 <a< 1.
By (4.32), the r. h. side e L'(I%;2) for 1/3 < a < 2/3. Therefore

3
|Cr| <2C"2*"|| Al llgll"j [det Q| ? |det Q|72 79d"  (4.34)
12/22
Remark now that Q is a homogeneous polynomial of order n, while
QM is homogeneous of order M (M > 1).
Scaling t; = 2721 -s; one has then

3 3
n—2noe—2M(1 —2)
|Crl S2CT (Al @ P 27 2T nmsnsmeama =

J | (det Q)| 32%|(det QM) |~ 3/2(1-®245 (4.35)

Choosing o such that 2/3 > o > sup (1/3 - (1 — M)) the conclusion
of Lemma 6 follows. O n

There are at most (2n — 1)!! tight graphs of order n contributing
to W2, From (4.35) the proof of convergence of W* to zero, when 1 — 0,
is achieved if one can prove that

A : one can choose '™ so that M/n remains bounded away from zero
when n — oo,

B : the integral is dominated by C"-(n!)~! for some C > 0.
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Indeed, if this is the case, one can choose «, 1/3 < o < 2/3, independent
of T, so that the sum of all contributions of tight graphs of order n vanish
as A" #@" for some B(a) > 0.

It is intuitively clear that, the more « complicated » (i. e. interlocked)
is a graph, the bigger one can choose M/n. « Very simple » graphs would
instead lead to small values of M even for large values of n.

Consider, e. g., the graph T,

N N 7\

1 2 3ty ts t2n
FiG. 2.

This is a tight graph, but it is straightforward to prove that M = 1
independently of n.
Indeed, the only subgraph I'™ such that

(det Q)1 ~%det QM)~127feL,

is the one composed only of the arc y, ,,.

We shall prove however that the only « dangerous » graphs are the ones
which contain one or more arcs ot the type yx x+, for some 1 < K <N,
which are disjoint from the remaining arcs in T

The resummation indicated before (4.31) will then consists in a resum-
mation over all graphs which differ only for the presence of one or more
such arcs.

Before giving the proof, we pause to provide a physical interpretation.
An arc y; ;. represents a « rescattering process », i. €. a process in which
there are correlations between two interactions which occur successively
in time. It is known that rescattering is the source of most difficulties in
the treatment of diffusion in a random medium.

It is also known in applied mathematics and physics how one should
try to circumvent this difficulty: one should describe the process in terms
of an « effective » propagation rather than « free propagation » between
successive interactions. Rescattering goes then in the definition of « effective
propagation ».

Technically, such effective propagation is described by a resummation
over a set of graphs.

Our approach will be much in this spirit. As we shall see, we shall be
able to give an estimate of the absolute value of the ratio between effective
and free propagator, uniform in 0 < 4 < 4, and in 7 over compact sets.
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While no such bound will be found on the phase, the uniform bound
on the absolute value will suffice, through Lemma 5’, to prove convergence
of W, to zero, when A — 0, uniformly in 7 over compacts of R*.

Prompted by this physical interpretation, we introduce a few more
notation.

5. ANALYSIS OF GRAPHS

n
Let |:g:| be the smallest integer which is not smaller than 3

Let I be a graph. We say that y € I is disconnected if it does not shadow
or intersect any other arc of I'.

Wessay that y; ;€ I'is a rescattering arc if y; ; is disconnected and j = i + 1.
We say that I' is rescattering-free if it contains no rescattering arc.

If T is of order n and rescattering-free, we shall construct a class M

of subgraphs I', MEM, all of order > B} and such that

inf (det Q)™ !'*%(det Q)12 Fe LY(I7,2) (5.1)
MeM
forall0 < < a < 1/2.

Let I' be rescattering free, and yx, x,€I’ be disconnected. Then
3K, Ko # K, K, such that K, e s(yg, x,)-

Therefore the submanifold of I7;. defined by i, — tx, = 0 has co-
dimension at least two, so that (rx, — tg,)” ' " is integrable over I7.
foro > — 1.

In its dependence on ty, — tg,, det Q has the form

|det Q| = [tx, — tx, | |tx, — tg, + Bolt) |

where fq is a polynomial in the remaining t,,’s.
Therefore, if I'™ is constructed in such a way as to contain yg g, and
a subset of the other links, and if in an open domain D < R?"~2 the mani-
fold of zeros of B, intersects transversally the manifold of zeros of oM,
then
(det Q)™ 1**(det QW)= 12" L (D x I?)

for 0 < p<a<1/2, where I? = {0 <1, <tg, <1/A%}.

On the other hand, suppose {y; ... 7,}are the arcs of a cluster (a
maximal connected subgraph of I') with s > 1, and let #, > ... > t,_
be the corresponding vertices. Det Q is a polynomial in g, ..., tg,.;
let Z,,, ., beits manifold of zeroes, which of course depend parametrically
(in fact, rationally) on the remaining ¢'s, which we denote by ¢, ... t,, ..

s
LetM = {7] ... y,} beasubsetof {y, ... y,},p = 5 and consider
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the graph I'™ obtained from I' deleting the arcs 7,, which are not in M.
Denote D™ the subset of /A% >, >t,, , >0 such that

.59 and X . intersect transversally .

Then U DM = {t/i*>1,>

MeM

0}, where M is the col-

chn 2s

=
lection of subsets of {y; ... y,} of order [ ]
Therefore

inf (det Q)7 ! (det Q‘M’) eL‘(I;'Mz)

if it is in L' over U D™ when considered as a function of the variables

MeM
thl “ e [h2n—2s'
Repeating inductively this procedure, first for those arcs which are
disconnected from the rest of I', and then for the clusters of order s > 1,

one concludes that there exists a collection M of subgraphs T, M e M,

of order > [g], such that
1

inf (det Q) *(det QY 2 el 1) 5.2)
Me

for0<f<a<1/2

From (4.14), setting 7, = sup (1, t) and taking 1 < 1, by suitable rescaling
and using the fact that det Q and det Q™ are homogeneous polynomials
in the variables ¢;, one has

|Cr| <2C"||A |9 |lnrg(z—(l—d)—%(%+ﬁ)>in<—2+2(l—a)+%+ﬁ)

inf | det Q |71 det QM! s (5.3)
ln MeM
when 0 < f < a < 1/2.
We must now give a bound on the contribution to W, coming from
all tight rescattering-free graphs of order n. Since there are at most (2n — 1) !!
such graphs, it will suffice to prove that the integral in (5.3) is dominated

1
by = C% for some C, > 0.
n!

Since the integration domain is triangular, one may in fact have expected
a factor (2n!)~ 1. This is not so, since the integrand is not integrable over
all permutations of I,. This is due in particular to the fact that it contains a

factor (t;, — t;,, )" ¥*7@ P for each disconnected arc.
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1
From (5.3) it is seen that we must require 3 + f>2a i e

1/1 3 5
o ﬁ<2<2 ﬁ)<1/3 so that 2+(oc p) < E

the factor considered is integrable in I, only because the graph is, by
assumption, rescattering free, and therefore 3K such thatz; > ¢, >t | .

It is however easy to see that integrability will still be guaranteed in
all sectors n(I) obtained from I by permutations which are such that the
end points of a disconnected arc are permuted with the end points of another
disconnected arc. The graph I' will be rescattering-free also in these
permuted sector.

It is easy to verify that there are at least n! such permutations.

It remains to give a bound on the integral on each such permuted sector.

By repeatedly using the inequality

la+b|>ab'™?
and the properties of M, one can prove that each sector z(I) can be parti-
tioned in at most 22" subsets y{™, Uy"') = n(I), such that in y}

2n

inf [det Q|~'"*|det QY|712*/ < HllK(DI_”‘
MeM

K=1

2 1
where y¢ < sup {1 — g(oc —p),1—a, 3 +p } and the I(t) can be chosen

to be independent linear combinations of the ¢/s, i=1 ... 2n.
The Jacobian of the transformation t — [ is < 4",
Therefore

[ inf |det Q| 1+*|det QM| 1/2+#
eM

M

1 iy
<— | sup inf |det Q| '**|det Q4| 2"

n! unM T MeM

2n
1
m,KU mﬂdt [ [l s
0

1
Take now a =—, f = g . Then ypg < —VK so that

4;

Jmf |det Q|| det Q¥| % < ‘82"-122"-42"
1 :

E
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From (5.3) one has then that @,,, the contribution to W, from all tight,
rescattering-free graphs, is bounded by

7

|Cl < 2CH | A ][] % |[ed am8 (5.4)

for C, sufficiently large.

Consider now the « rescattering » graphs, i. e. those graphs which are
not rescattering-free.

As a set, they can be obtained introducing rescattering arcs in rescattering-
free graphs.

For each T, let I'° be the (rescattering-free) graph obtained from I" by
dropping all rescattering arcs. We call I'° the skeleton of I', and I an orna-

ment of I'°. Of course, we allow I' = T'°, i. e. a skeleton is one of its own
ornaments.

Denote by I the set of all ornaments of the skeleton I'°. Let 3° be

the collection of all skeletons. Then U I is the collection of all graphs,
I'0ex0
each counted once. For each I'°, let Cro be the contribution to W, coming

from the graph I'°, and Cyo the sum of the contributions to W, of all orna-
ments of I'°.

We shall give an estimate, uniform in t over compacts andin0 < 1 < 1
of | Cge| in terms of | Cro|.

We shall then use this estimate, together with the previous result on
skeleton graphs, to prove convergence of W, to zero, when A — 0, uni-
formly in 7 over compacts of R*. Let I'° be a skeleton, with verticest;, . . . t
and with a given set of arcs.

An ornament " of ', if T" # I'°, is obtained by inserting rescattering
arcs in one or more of the intervals oy of I'°. As we have already remarked,

if s§9 ... s§) are the vertices of the my arcs inserted in oy, one has

iz

) (K)

e 25028, >, ., forallp ift, > s s
lie <SP <V <t forallp ift, <t

This is a consequence of the commutator structure of the terms which
we represent graphically.

For the same reason, the mark * which we have used to keep track
of the multiplication by A, is never covered by a rescattering arc.

Consider now the contribution Cr to W; coming from a graph I which
is an ornament of I'° obtained by adding my rescattering arcs in oy,
K=1...2n-1.

Call &% n =1 ... 2m, + 1 the momenta of the intervals of I" contained
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in the interval ox of I'°. Call ¢/, i =1 ... 2my, the vertices of T\I'°
contained in o, and denote by px the momentum of o in I'°.

Then, according to (4.18), the expression which defines Cp differs
from the one which defines Cro by the presence of the extra integration
variables £, and of the corresponding J-functions and factors of the type
exp (iIK*(e — ¢'))%(l;(K)). Due to the rescattering nature of the arcs added,
the new J-functions imply that é&)_, = p, n =1, ..., mg + 1. But then
the exponential part of the integrand takes the form

2n—1 mx
exp{ Z pK(th - 1K+1 Z Z 0-2s 1 OJZ(A)}
K=1 s=1
Moreover, the I)(¢) which appear in (4. 18) are linear functions of the £3’s
and of the p*’s, with coefficients which depend only on K.

From this analysis, one concludes that, if Cro is given as in (4. 18), then,
after setting t; = 7,272

Crlp) = A‘Z"J dr, ... J _ drz,,jd{pl Jd3p2,,_1
0 0

2n—-1

exp {i Z Przn(‘fim - Tim+,);h_2}
H(l (p) H L p)A(L(p)) H BRI (T — Tie_p p) (5.5)
where

B=§Lr0)(‘cix — Tigs 1° [Z)

T I | TSGR Oy
lril(v‘il(+1 K=1
mx
EG(E%; — p)ida®ideX ﬂ (5.6)
i=1
and I s a subset of 1, <0, < ... < Oy < Ty, I T < Ty,
orof 1, 20, > ... 2 0gmy > T, if Ty = 1y, . determined by I' | T

(recall that, while s,; is the chronological successor of s,;_, for all i, it
need not be true that s,;,, be the successor of s,)).
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Notice now that the iﬁtegrand in (5.6) is symmetric under permutations
of the values of the index i. Therefore

o
B%r )(‘CiK - TiK+1 ’B)

mg
_(~ 1mam2m Y K \2\( K K -2
o o exp { ’(PK - ( Zi) )(O'Zi - 02i+1))~ }
TIK TTIK 41
i=1
| [ - pa ] [ et [ | 5.7
i i i
where THI™  is the union of the L., over all permutations © of
the index set 1 ... my, such that
Tix S O2n(1)-1 S O221) S o+ < Oppmg) S Tiges,

if 7, < 74, ,,» and a corresponding expression if Ty =7
It follows that

iK+1°

H B{ly)_o(‘cix T Tig sy BK)

K
is the product of the terms of order m, ... m,,_, in the expansion of the
exponentials in
H Dy(tie — Tig, > PX) (5.9)
K

where

DK(TI'K - riK+ 12 EK)
B . 31 i(pg —h2)a/A2
=exp| — 2 do, | do, |d°h%(py — h)e'’x (5.9)
0 :

0

Recalling that I" was obtained adding my rescattering arcs in the K®
interval of T'°, we conclude that, if

Cro(p) = £ l_Z"Jdrl J 7 dty, ... fd3p1
0

0
2n—1

. fd3p2n—1 exp {i Z przn(tim - timﬂ)}
1

m=
n

: H G1(p)) H5(Li(p))A(L(1J)) (5.10)
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then Cyo(p) is given by an expression which differs from (5.10) only by

the additional factor
2n—1

H D(Tip, = Tipy N Pm) (5.11)

m=1
where D,(t; — 7, ,) is given by (5.9).
It is now evident from (4.22) and Lemma 5’ that, in order to extend
to Cyo the estimates given for Cro, it suffices to prove that there is a constant
C > 0 such that, uniformly in v over compacts of R* and 0 < A<1

|| Dk(v, ) |lo < €© (5.12)
where || B(*) ||, = sup I B(p)|.
Pel

In turn, (5.12) will follow from the estimate

172 Re J do, f do, Jdﬂ@(‘g _ h)ei(Pz‘hz)dzl'z

uniformly in ¢ over compacts of R™ and in 4 in [0, 1].

We shall now prove that, under the assumptions made on g, (5.13)
holds for a suitably chosen constant C,.

Setting ¢, = sA2, we must study

61/42 -
J do, J ds J d*h%(p — h)e'®* s

a1/A2

sup < Cy0 (5.13)

peR3

sup
peR3

(5.14)

Since G € L, by assumption,  is continuous, moreover, again by assump-
tionon G, K(p) - Owhen|p| — oo,whereK(p) = f@(;_p — h)d(p? — h*d>h.
Therefore

a/A?

lim ds Jd%@(g — h)e'@*~hs — J &hé(p — Wd(p*> — h?) (5.15)

_a/lz

holds uniformly in peR?® and in a for a > ayA*% To evaluate (5.14),
we divide the integration over ¢, in the two intervals 0 < o, < qgi®/?,
ay2¥? < o, < 0. If 6, < ayA3?, one has

J ds Jd%{;(p — h)eitw*~hs
a1A2
Therefore

aOP/Z G1/A2 N
j J ds Jd%g(]_) — h)e'@* ~Hs
a1/A2

uniformly in peR3.

< 240k V2%, (5.16)

<2309, =3 0 (5.17)
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On the other hand, in view of (5.15)

G 614~ 2 N
&l J /dalf ds J d*h%(p — h)e'P* ">
agi3/2 —61A-2 £
= “Jdah@(g - hd(p*> — h*) (5.18)

the limit being uniform for p e R3.
Let

C, = sup j E*h%(p — BS(p? — h?) (5.19)

peR3

and notice that, for A > 4, 3C,(,) such that

o G142
sup J do, J ds f BW(p — h)e'w* s

reR3 Jo —ga-2

< Cy(lo) 02+ C, (5.20)

From (5.17), (5.18), (5.20) one concludes that (5.19) holds uniformly
in o over any compact K for a suitably chosen C, > 0 (of course C, depends
on K).

From (5.4), Lemma 5’, (5.12) and the estimate (5.2) we conclude that
the contribution to W, from all tight graphs is dominated by the series

2(5—30) 2Gu—1j_
erwl(ﬁ)h”g”nenclro“A||T3 )2 cr (5.21)

n=1

for 1/3 < o < 2/3. We shall take o = 1/2.

For /1 < Ay(¥9, C,, @1/2, To) this series is absolutely convergent, and
therefore the series converges to zero when A — 0, since each term con-
verges to zero in that limit.

The series (5.21) dominates | W#| ; therefore W* — 0 when A — 0,
uniformly in T over compacts.

From (4.31) and the uniform boundedness of U, we conclude that

E(A) — A, o0 0

uniformly in 7 over compacts of R*.
We summarize this analysis in
THEOREM 2. — Under the assumptions ¥eL,, ?eLl,
sup jg(p — K)d(p*> — KHd’K < oo,
peR3 -

h
one e lim, E(A(/22)(p) = (T, A)p)
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in the sup norm, uniformly in t over compacts of R*, where T, is defined
in (3.6), (3.7). O

Before closing this section, we would like to make a short comment
‘on estimate (5. 13). It is easy to see that no such estimate would be available
- ont he imaginary part of the integral, i. e. on the phase of the factors Dy,
when 4 — 0. This fact is very closely connected with the problems one
would encounter if one were to study the Van Hove limit for the evolution
of states rather than of observables (this added difficulty is sometimes
called Casimir effect). With € LYR?®), one could for example study

E(e™**U (t/A% ) (5.22

in the limit A — 0.

For A £ 0, (5.22) is well defined, in view of §2.

One can use the Dyson expansion in the study of (5.22) and attempt
a proof along lines similar to the ones above.

A graphical analysis can still be done, but a major difficulty comes here
from rescattering graphs, mostly because one cannot control uniformly
the phase in the integral (5.13).

6. CONVERGENCE TO THE MARKOV LIMIT:
CONVERGENCE OF CORRELATIONS

We have seen, in §4 and § 5, that the average of the dynamics for trans-
lation-invariant observables converges in norm to a Markov semi-group,
uniformly in time over compacts.

It is therefore natural to expect that all correlations between observables
at different times converge to the correlations given by the Markov semi-
group.

We prove this result in the present section. We have

THEOREM 3. — Let the conditions on V be as in Th. 2, A,(t)(w) be defined
as in Th. 1, and T, A as in (3.6), (3.7).

Let AY, ..., A™ be arbitrary elements of .oZ, and choose T, > 7,> ... > 1.

Then, in the norm of &/

lim B(AL(T/4%) .. AD(2?)
— TrN CANLT

IN-177IN

CANSD T A (6.1)

T1T2

uniformly in 7; over compacts. O

Let U,(t)(w) be the unitary group which implements the isomorphism
A — A (t)w).

Recall that U,t)(w) is, for a)eﬁly,, wQ;,) = 1, the strong limit along
the sequence ¢, | 0 of exp (iH{t), where H{?= —A+4V, =H,+ 1V,
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If H is self-adjoint, and A® are bounded operators which commute
with ™, the following identity is readily verified:

e—iHotl(einlA(l)e—thlethzA(Z)e—thz . ethNA(N)e—thN)eiHoh
=e” iHQtNeiHh - IN-IN(e— iHo(t1 “IN)eiH(tl - tN)A(l)

. AN~ 1),iHEN -1~ 1N) piHO(N - 1 —tN)) - AMN)p—iHt — Nt piHotN (6 . 2)

where H® = ¢~ HosHHos,
We substitute H - HY{» = H, + 4V, in (6.2), and take the limit n > co.
This can be done because strong convergence is guaranteed by Lemma 1

and there are only a finite number of ¢;’s involved. One obtains an identity
of the form (6.2), with the substitution

em M o Ul

where Uj(t) = e™oU ()e'tor,
Iterating (6.2), and taking the average one has

E(A(t,) ... A&N)(t,,))
=E { e—lH()fNUtll —tN(tN)e-lHO(tN -1 _‘N)U'AI —IN- l(tN— i tN)
e~ Molin-2ZIN-OR TIN-2(fy ) — 1N )
e iHo(t1 _IZ)U),(tl _ tz)A(l)UA(tz _ tl)eiHO(tl —zz)A(z)
AU (= ryeon | ©-3)

Recall now that, from Theorem 2, uniformly in p, v and uniformly in ¢
over compacts one has, in norm convergence

lim E(e™ Mo U(a/A)AUY — a/A)e™#) = T, A (6.4)

In fact, the 1. h. side of (6.4) is independent of p, v due to the stationary
character of the random field V.
It follows then that, setting tx = 1 - 472,

hm E{e“tﬂotNUtl l‘N(t E{e—lHo(h lN)Utl N~ 1(tN _tN)
E{ E{elﬂo(tz U (t —t )A(I)U (tz—tl)e_'H"('z t1) } A?
. Ut)}_tz(l3-t2) e~ iHoltz— t3) } A(3) . }A(N)U!Al tN(_t )elHofN }
ST AN LT, AD 6.5)

To prove Theorem 3 we must then prove that the difference between the
left-hand side of (6.5) and the right-hand side of (6.3) vanishes, when
J — 0, in the norm of ./, uniformly over compact sets in the 7;s.

Once again, we use Dyson’s expansion for e~ **'U ,(f) and a representation
in terms of diagrams.
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It is not difficult to verify that the r. h. side of (6.3) can be written in
the form

ZZ( z)uzw’f dt(”E{[V YO, V(D) [V(ER),

j=1n;=0
N N- 2
V(D) AN, .]A‘ D LAY, ] AD), ] (6.6)
where 1., .., is defined by
iz > 2@ 2 > 20y j=1...N-1
/1 = .. 2>, =020

In deriving (5.6) one has used the fact that, by definition,
eMosV(s,)e”Mos = V(s; — 5).

Expansion (5. 6) admits a diagramatic analysis, using the rules of Gaussian
integration, much in the same way as described in §4.

The difference between the 1. h. side of (5.5) and the r. h. side of (5.3)
can then be estimated, using a formula analogous to (4.31), in terms of
the contribution of tight graphs. Indeed, (5.6) differs from (4.17) only
because of the larger number of A® present, as can be seen by relabelling
the times ¢{. Conversely, (4.17) can be regarded as particular case of (5.6),
obtained setting A? =1, i =2 ... N, A" = A, (Strictly speaking, this is
not correct, since ./ does not contain the identity. However, there is no
difficulty in extending the results of §4, 5 and of the present § to cover
the case A €./, where .« is the smallest C* algebra which contains the
identity and /)

In view of Lemma 5’, the presence of some extra factors A? in (4.7)
causes only very minor modifications in the estimates needed. In particular,
the analysis of § 5 in terms of rescattering-free graphs and of their ornaments
carries over without modifications to the present context. In particular
notice that, due to the form of (6.6) and to the structure of the set I, .,
no symbol * corresponding to one of the A% can be shadowed by a rescat-
tering link.

Since there are only very minor but tedious modifications to the analysis
performed in §4 and § 5, we omit here the details. O

Remark. — The same result would have been obtained if one had studied
the limit, when 4 — 0, of
E(A(AK)(rN/lZ) .. A(,ll)(tl//lz) 6.7

whent, 2 1,> ... 2 1\
Indeed, (6.7) is the adjoint of the 1. h. side of (6 1) if the A® are self-
adjoint, as an element of o, while T, -A™ ... AW is self-adjoint.

Tl T2
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It is perhaps interesting to remark also that the limit would have been
different, and in general not connected with a Markov semi-group, if one
had considered (6.7) with an ordering of 7, ... 7y which is neither chrono-
logical nor anti-chronological.

Technically, this comes about because in this case there would be an
overlap between the ranges of the t in (6.6) for different values of ;.

This fact allows for a larger number of rescattering graphs, and also
for the fact that some of the * marks could be now shadowed by a rescattering
arc. All these terms are more difficult to control. ,

Of course, more detailed assumptions about the A® could improve the
situation, as can be seen from the following very trivial consideration: if
the A® which violate chronological (or anti-chronological) order are
replaced by I (the unit element in ./,), then Theorem 3 holds.

More generally, one can see that a necessary condition on A, if t; is
neither the successor nor the precessor of 7;,. 4, €. g if 1; > 7., T; > 7,3,
is that T,, ,_.,- A" be well defined (notice that here 7;_; — 7; < 0).

We shall not pursue further here this point.

Before closing this section we want to remark briefly on the assumptions
made and on the method of proof.

A) The assumption that V be Gaussian is not crucial and has been made
only to keep the level of formal complexity within reasonable limits.
Our results, i. e. Theorems 1, 2 and 3 are valid under the following much
weaker (and perhaps natural) conditions: Every correlation function
W(x, ... x,) = EV(xy) ... V(x,)

can be written in the form

W, ... x,) = ZUW(XW X)L U x9) (6.8)
- 7
K

when z n, = n, .# is the collection of all partitions of the set {x1 ... X}

s=1
in subsets, the « connected components » UW® are translation invariant,
ie U™x ... x,=U"(x; — X, ..., Xp—1 — X,), and moreover

U, ... &)eLARY), UMK, ... K, e LY(R??) (6.9)

The functions U® are called often Ursell functions in statistical mechanics,
and (6.8) is referred to as Ursell expansion of the correlation W.

The U™ are obtained from the W using recursively (6.8); they exist
and have property (6.9) under very mild assumptions on the random
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field V, and reflect a suitable « mixing » property. We still assume E(V(x))=0,
so that U%(x — y) = E(V(x)V(y)). At the next step one obtains, e. g.

UP(xy — xg, X5 — X3, X3 — Xg) = Wlxy ... xg) — W(xy, x2)W(x3x4)
— W(xx3)W(x3x4) — Wlxyx,)W(x2x3)
The Gaussian random field is characterized by U® = 0 for p > 2.

The analysis of § 5 can be repeated using (6.8) instead of the rules of
Gaussian integration (which of course coincide with (6.8) when V is

Gaussian).

One will now have a larger number of graphs; an end point can belong
to more than one link. For example, one can represent E(V(t;) ... V(t4))
with the graph

ty to tg tg
FiG. 3.

The definition of tight, rescattering-free, rescattering additions, ornaments
is the same as before.

Due to (6.9), there will be in general fewer é-functions in expression
such as (4.18), and therefore the matrix Q in (4.22) will be of order > n,
and one will have some U instead of some of the factors %.

Det Q will then be a polynomial in the ¢;'s of order > n. The scaling

1
~(n+K
done in (5.3) will produce now, for the graph of order n, a factor A* v ',

K > 0 (depending on the graph); the estimates on the integral still hold,
with an extra factor CX.

Estimating, as done in § 5, the number of graphs of order n one proves
then that Th. 2 (and Th. 3) hold if there is a constant a > 0 such that

NUP || < a?|| 4|72 (6.10)

where ||F|| =sup {||F|,,[|F|l; } and %(x—y)=U>(x—y)=E(V(x)V(y)).
From the proof of Theorem 1 it is not difficult to see that also Th. 1
holds under condition (6.10), and in fact under the weaker condition
IOl < a” | 91152
We shall not detail here the simple but very tedious proof.

B) The assumption that V admits moments of all orders, so that
W(x, ... xy) is defined for all NeZ*, is most probably an artefact of
our method of proof, based on estimates on the full Dyson expansion.

From (4.32) one feels that it should be possible to provide a priori
estimates, of the martingale type, using some form of Gronwall’s inequality
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and the mixing properties of the random field V, without assuming the
existence of momenta of all orders. This is indeed what can be done in
the case of a classical particle in the random potential V, because there
one has, for 4 > 0, a genuine Markov process in (x, v).

We have been unable to find such martingale-type estimates, although
the results of § 5 strongly suggest their existence. It is very plausible that
steps in this direction could be taken using the description of the evolution
of quantum observables through Poisson point processes advocated e. g.
in [8]. We shall not pursue here this point.

7. CONVERGENCE TO THE CLASSICAL LIMIT

In [3], it is shown that, under rather mild conditions, the momentum
process of a classical particle in a random force field converges, in the
Van Hove limit, to a diffusion process. If the force field is conservative,
this diffusion is reduced by each sphere S2 = R3, a > 0 (here

Ss={peR’| |pl=a})

It is therefore natural to inquire whether there is a limit, when # — 0,
of the Markov process described in §3, and in particular whether this
limit is precisely the diffusion associated to the classical case.

In this § we shall give a positive answer to both questions.

We begin by noticing that, when # # 1, the natural representation
of o/ by C(R?) is through the Fourier representation of L*(R®) given by

2(m3 - -3 ig'z 3
LA R>2¢ — ¢ =(h)~ > | exp 5 cp(x)d>x (7.1)

This comes from the fact that one is interested in a representation in which
the observable P; (the i component of the momentum) is represented
by multiplication by the coordinate function p;.

The map (7.1) has this property, since

0
PK:—i— K=1,2,3
Oxg

The evolution of the observable A is given by

itH —itH
A — A(t) = exp (—) A exp( >
h h
where H = — h%A + AV.
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Taking these explicit dependences on # into account, one obtains, for
the limiting semi-group studied in § 3, the expression

T.n = exp (tZ4)
where

(ghA)(p)=h‘2Jw dtjdijd;jdﬁjﬁp’g(x—y) exp{i(p;pl —K)(x—y)

bi (” L )(x+Y)+ LK) }(A(p')—A(p» (7.2)

Setting [ = K — h™'p one has

2

1 i
(ZwA)p) = Eh_zjd”g@fﬁ(_l'l_’ + 7>(A(P +hl) —Alp)  (7.3)

Since &, defines a Markov semi-group, and therefore a closed Dirichlet
form, it is natural to seek convergence when # — 0 in the sense of Dirichlet
forms. This will also imply convergence of semi-groups. For a direct proof
of strong semi-group convergence, see €. g. [/0].

The Dirichlet form associated to % is

elf, g) = jf— (PNZLr))dp (7.4)
with domain
D, = { fl feLR%, &(f, f) <o}
We now remark that ?(l) is symmetric (and real) since
E(V(x)V(y)) = E(V(»)V(x)) = E(V(x)V(y)).
Therefore (7.4) can be written

1
elf,8) = — — |&p|PUSf(p + hD) — f(p)glp + ki) — g(p))

- an? .
-{2(1)5(_1-g + 5?) (1.5)

In view of the fact that 4 e L,, and under a further assumption on ¥ which
guarantees among other things the existence of the integral (7.7) below,
we expect that g, converge, in the sense of forms, when # — 0, to

3
1 of 0
ol f 3 8) = —ZJZ Ap 2~ (1.6)
where AP = f 0l o(p - D! .7
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The (closed) Dirichlet form ¢, is associated to a diffusion process with
generator & defined by

0 0
(Zf)p) = Z <5— Ai(p) —)f (») (7.8)
Di op j

ij

which is precisely the generators of the diffusion one obtain in the Van Hove
limit for the momentum process of a classical particle in the random force
field which has — V as potential.

The formal convergence of ¢; to ¢ is obvious.

To give an actual proof of convergence, notice that the Dirichlet form ¢,
is reduced by each sphere S, C > 0, and defines there a diffusion semi-
group which has as generator the formal reduction of % to S2.

Also ¢, is reduced by each S2; denote &f such reduction.

For all smooth functions f, g on S one has then

1 ~ v 4 — -
59 = — J dﬁL ap((P) = S(PIe(P') - g(ﬁ))g(p — )
s Jsi

where p, p’ are vectors of lenght C.
For peS}, let the set /¢, be defined by

cn={1eR?| p+ hleS}}

L S UL
H Mp 0

Then
1
5/, 8=— 5 j

S

112%() (7.9
17 7] 119 (7.9)

Notice that, uniformly in compacts of R?, the manifold ./, tends, as
h — 0, to the manifold .47, defined by

N, ={leR®|l'p=0}
Let f be a differentiable function on S2. Then, for p, p’ €S2,
| f(p) — f(P)] <

p—r "
with y, > 0.
Assume further that there exists a function %4(p), p = O, such that
Yo(11) =290 VieR® (7.10)
and such that
4,eL,(R%) (7.11)

(this is of course the case if ?(l) is rotationally-invariant). Then
&(f, g < Ky,y, uniformly in # > 0.
Moreover

& f, &) — &(f, 8 (7.12)
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where

1 A - o
&lf, 8= — E;J dﬁjdﬁ(Vfc- (Vg DI11P%Mal-p)  (7.14)
s
with f(K) = f(cK) for keS;.
Since C! functions are a core for &, it follows that . converges to %,
in strong resolvent sense, and therefore T,;, — exp £t strongly.
We summarize these results in

THEOREM 4. — Under the assumptions (7.10) and (7.11) the Markov
semi-group described in § 3 converges strongly, when # — 0, to the diffu-
sion semi-group which describes the Van Hove limit for a classical particle.

Proof. — We have already proved strong convergence on each sphere S?;
convergence is in fact uniform, as easily checked, for ¢ over compacts
in (0, o0).

Consider in L%(R?) the set of functions of the form

f(p) = AllpDA(D), feC! (7.14)

where f; has compact support in (0, o).

Since all semi-groups involved are reduced by each sphere S?, and
convergence holds strongly on each sphere, uniformly for ¢ over compact
of (0, o0), it follows that strong convergence holds for all functions of the
form (7.14).

We now remark that #, is non-positive, and so are &,

Since the set (7.14) is dense in L*(R?), strong convergence of T,, to
exp Lot on L}(R3) follows. O

Remark. — One should notice that we have taken the limits in the
following order: first the Von Hove limit A — 0, then the classical limit
h — O

In some sense, Theorem 4 shows that one obtains the same result by
taking the limits in the reverse order. But it should be observed that in
this case the classical limit # — 0 is taken in a somewhat different sense,
e. g. using coherent states, and not directly on extensive observables.

It is natural to inquire about limits along other directions in the A, A
plane; we have so far no definite results on this problem.

ACKNOWLEDGMENTS

Research on this problem was performed, and the results and proofs
brought to various stages of concision, while the author was visiting pro-
fessor at the following Institutions: New York University, Max Planck
Institute in Munich, University of Aix-en-Provence. The author is pleased
to record here his gratitude to profs. D. Zwanziger, W. Zimmermann and
M. Sirugue-Collin for their inspiring hospitality.

Vol. XXXIX, n°® 4-1983.



384

/] D.
N.
N.

2] G.
E.

[3] H.
G.

[4] L.
L.

[5] G.

[6] H.

[7] R.

G. F. DELL’ANTONIO

REFERENCES

HALL, P. STURROCK, Phys. Fluids, t. 10, 1967, p. 2620.

SHAPIRO, J. E. T. P. Letters, t. 2, 1965, p. 291.

VAN KAMPEN, Phys. Rep., t. 24, 1976, p. 171.

PAPANICOLAU, S. VARADHAN, Comm. Pure Appl. Math., t. 26, 1973, p. 497.
Davies, Comm. Math. Phys., t. 39, 1974, p. 91.

KESTEN, G. PapaNicOLAU, Comm. Math. Phys., t. 78, 1980, p. 19.
F. DELL’ANTONIO, in preparation.

VAN HOVE, Physica, t. 21, 1955, p. 517.

VaN HoOVE, Physica, t. 23, 1957, p. 441.

EMcH, P. MARTIN, Helv. Phys. Acta, t. 48, 1975, p. 59.

SPOHN, J. Stat. Physics, t. 17, 1977, p. 6.

STRICHARTZ, Duke Math. Journ., t. 44, 1977, p. 704.

[8] Ph. CoMBE et al., Poisson processes on groups and Feynmann Path Integrals, Preprint,

9] M
0] G.

Marseille 79/1139.
. DONSKER, S. VARADHAN, Comm. Pure Appl. Math., t. 28, 1975, p. 1.
F. DeLL’ANTONIO, Proceedings 81 Marseille Conference, Springer Verlag, in

press.
(Manuscrit recu le 24 septembre 1982)

Annales de I’ Institut Henri Poincaré-Section A



