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Large time, small coupling behaviour
of a quantum particle in a random field

G. F. DELL’ANTONIO

Istituto di Matematica G. Castelnuovo, Universita di Roma

Inst. Henri 

Vol. XXXIX, n° 4, 1983,

Section A :

Physique ’ theorique. ’

SUMMARY. - For a quantum mechanical particle in a suitable random
field we prove that all finite-dimensional distributions of extensive obser-
vables converge in the Van Hove limit to the corresponding distributions
of a classical Poisson process. In the classical limit this process converges
to a diffusion.

RESUME. 2014 On demontre, pour une particule quantique dans un potentiel
aleatoire convenable, que toutes les distributions de dimension finie d’obser-
vables extensives convergent dans la limite de Van Hove vers les distri-
butions correspondantes d’un processus de Poisson classique. Dans la
limite classique, ce processus converge vers un processus de diffusion.

1. INTRODUCTION

The motion of a classical or quantum system in a random environment
is expected to converge to a Markov process under suitable scaling limits,
usually involving large time scales and small coupling. Results in this
direction appear in the literature under various headings, e. g. homogenei-
zation, method of average, diffusion limit, and require in general detailed
specifications as to what constitutes a random environment and which
are the observable quantities to be studied.

_ 
Formal results and applications can be found, e. g., in [1 ]. The subject

has also been considered in the mathematical literature ; general results
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340 G. F. DELL’ANTONIO

can be found in [2 ], where one considers the case in which the interactions
with the random environment are a priori assumed to be weakly correlated
in time. These results can be viewed as a version of the central limit theorem
for a class of dynamical systems.
A more physical setting is one in which the random force field is assumed

to have weak correlations in space, to reproduce the properties of a rapidly
fluctuating environment. In this case, the fact that successive interactions
are weakly correlated in time becomes part of the proof (and indeed usually
the most difficult part); once this is established, the results follow modulo
(often very substantial) technical details. This more physical setting is
beyond the reach of the general results in [2 ], and proofs require the develop-
ment of specific techniques.

For example in [3] it is proved, under suitable but rather weak assump-
tions, that the velocity process of a classical particle moving in a random
force field converges weakly to a diffusion process in the limit in which
the force field becomes (locally) infinitesimal and the time scale is chosen
indefinitely large (Van Hove limit).

Here we prove a similar result for the motion of a quantum particle in
a random potential field.
As in the classical case, convergence will hold only for a restricted class

of observables, in particular for bounded continuous functions of
momentum.

Results in this direction are contained in a germinal paper by
L. Van Hove [4 ]. Important steps and proofs are in [5 ], [6 ]. The limiting
process is here a Poisson process, with transition amplitudes depending
on Planck’s constant ~.

It is a rather obvious question to inquire whether the results of [3] ]
for the classical case can be recovered in the classical limit. This is indeed
the case ; in the last section of this paper we shall briefly indicate the way
in which a proof is given. A full proof will be contained in [10 ].

It should be noted that the results we present here for the quantum case
are obtained under conditions on the force field which are stronger than
those of [3 ]. The results themselves are moreover weaker than their classical
counterpart, in so far as we only prove convergence of all finite-dimensional
distributions rather than convergence of processes. The assumptions are
stronger both because the force field is taken to be potential - this seems
unavoidable in Quantum Mechanics - and to admit moments of all
orders, with suitable bounds in terms of the moment of order two. Some
restrictions on the bounds can be lifted by more accurate estimates, but
our method of proof does not exploit enough the details of the quantum
mechanical evolution on the space-time scale characteristic of the problem.
In the classical case, many estimates depend on a rather detailed description
of « most » trajectories; that the Poisson process of the quantum case
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341A QUANTUM PARTICLE IN A RANDOM FIELD

converges as a process to the diffusion of the classical case suggests that
also in the quantum-mechanical setting it should be possible to have
a better control of the « motion of the wave packet » for most configurations
of the force field.

It seems however that the main drawback of the method presented
here, both in terms of assumption needed and of results which can be
obtained, is to be found in the fact that we are able to use only a very modest
amount of probabilistic techniques. In particular we lack the inequalities
for conditional expectations and the resulting tightness of a suitable family
of probability measures, which are the main tool in the analysis given in [3 ],
for the classical case.
A better strategy of proof could come from a more probabilistic approach

to the quantum-mechanical case, for instance a formulation of the motion
of a quantum particle in a potential field in terms of integrals over suitable
functionals of a Poisson process, as developed in [8 ]. In this case, it is

conceivable that a « small » set of trajectories will give the dominant
contribution in the Van Hove limit, and that the techniques developed
by Donsker and Varadhan [9] ] could put to use here.
We are indebted to Ph. Combe for some very suggestive discussions

on this possibility.
The content of this paper is as follows.
In this section 2 we give some further qualitative comments and the

description of the quantum mechanical evolution of a suitable class of
observables in a properly defined random potential field.

In section 3 we provide motivations and describe the limit Markov
process.

In section 4 we begin the proof of convergence of the averaged dynamics
when the potential is a Gaussian random field and outline the strategy;
further technical details and the completion of the proof are given in
section 5.

In section 6 we outline the proof of convergence for all finite-dimensional
distributions. We also outline how the proofs can be extended to cover
the case of random potential fields which are not gaussian. In section 7
we prove that the Markov process described in section 3, converges,
when ~ -~ 0, to the diffusion process of the classical case.

2. QUANTUM EVOLUTION
IN A RANDOM HOMOGENEOUS POTENTIAL FIELD

Let V(x) be the potential field. The motion of a quantum particle is

described by the Schrodinger equation

Vol. XXXIX, n° 4-1983.



342 G. F. DELL’ANTONIO

when A = / ~2 ~x2i, 03C8 E L 2(1R3) n D( - h20394 + V), and for convenience we
1

have taken units of mass such that m == 1/2.
We shall consider only motion in 1R3, although all the results we state

also hold &#x3E; 3, and in fact some of the proofs in § 4, 5 become simpler.
Some crucial estimates in § 4, 5 fail instead for n == 1 or 2, as will be apparent
in the sequel. The result could still be true for n = 2, which is somewhat
a borderline case, but the method of proof we present here fails in this
case. Since h plays no role until § 7, we shall set h = 1 until then.

In order that (2.1) provide a unitary evolution in L 2([R3) it is sufficient
by Stone’s theorem, that - A + V be self-adjoint. If this is the case, let

be the corresponding one-parameter group of unitary operators ;
one has = exp i( - 1B + V)t.

Let B be a symmetric bounded linear operator on LZ(f~3), i. e. a quantum
mechanical observable ; its time evolution, in the Heisemberg representation
(which we shall adopt) is given by

Let R3 E a -H- V(a), (V(~)~)(~) = .p~ - Q) be the standard representation
of the group of space-translations.
We shall denote by ~o the linear span over the complex numbers of

the observables which commute with for all a E R 3. j~o is easily seen
to be a commutative C* algebra, which can be identified via Fourier
transform with the algebra of essentially bounded functions on [RP.

Indeed, if A E one has

for some function A(p_) E L 00([R3). Here ~ is the Fourier transform of 1/1.
We shall call this the Fourier representation of Ao. Denote by Co(R 3)
the class of continuous functions which vanish at 00; is a subalgebra
of L 00, closed in the supremum norm. Let s~ be the subalgebra of j~o
which has as representative in the Fourier representation; ~ is
then closed in the norm topology. The observables for which we shall
prove limit theorems are the symmetric elements of j~.
We recall now briefly the definition of a random field. Let Q be a proba-

bility space, with generic point ~ endowed with the measure ,u. Let S be
a linear subspace of C(R 3; R) (continuous functions from R3 to R) and
let S 3 f ~ be a linear map from S to the linear space of random
variable (~-measurable functions over Q).

Formally, one writes ,,

t/

where for co) is a (generalized) function of jc. In favourable
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343A QUANTUM PARTICLE IN A RANDOM FIELD

cases, úJ) will be for each x a random variable. For a measurable
and integrable function on Q, we define ,

We require that V be stationary and ergodic.
The field V(x) is stationary if

for all a E [R3, as elements of (S*)n, S* being the dual of S.
One can choose Q in such a way that there exists a representation of R3

by unitary operators Ta on L 2(0, ,u) such that

Ergodicity implies that every measurable function of the random field V,
which is invariant under Ta differs from a constant function only on
a set of ~-measure zero.

If E(V(xl) ... exist as continuous functions, then for each x~ 1R3,
is a random variable, and one can choose a modification (on a set

of zero measure) of such that the resulting field is jointly measurable
in x and úJ.
These conditions are in particular met if V(x) is a centered ( = mean zero)

Gaussian field of covariance ~(ç), where G is continuous. One has then
of course

We shall state our results and give proofs only in the case in which V(x)
is a Gaussian random field. As will become apparent in the course of the
proofs, the results can be extended to more general random fields, provided
one has suitable a priori bounds on the moments of V.
On the Gaussian random field V we shall make the assumption.

ASSUMPTION A. -

If |g|1 is the L 1 norm of g, we shall use the notation

Having thus set our notation, we begin constructing the evolution of
the observables in j~ under the influence of the random potential field V.

In the Gaussian case, it is not difficult to prove that there exists a set Qo
of measure one, such that, if úJ E 03A90, H( úJ) == - 1B + co) is essentially
self-adjoint on CÜ(1R3). This is sufficient to define a dynamics for a . a . cc~.

We shall however be interested in regularity properties of the average
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344 G. F. DELL’ANTONIO

dynamics. To obtain these, we choose to approximate first and
to define the dynamics by a limiting procedure. A natural choice would be

For all x, ~ is bounded below, uniformly in x, co. If
it follows from the individual ergodic theorem that

for a . a . cc~, VE1~( ~, cc~) E L o~(~3), the space of functions which are in L2
when restricted to any bounded subset of [R3.

Therefore there exists a set 03A91 c Q, (03A91) = 1, such that, if 
- Ll + VE1~( ~, is essentially self-adjoint on CÜ(1R3). Moreover

is a core for - 0394 + V(1)~, and exp i(- 0394 + V(1)~(., 03C9))t is strongly continuous
in t for all cc~ E Q, and strongly measurable in cc~ for all t (this can be proved,
e. g., using the Trotter product formula, since the pointwise limit of measu-
rable functions is itself measurable).
While (2. 5) is in many ways a natural approximation, it requires much

machinery to prove that, for all t E R, úJ E 03A91, the limit ~~0 exists as a
unitary operator.
We shall choose therefore the following approximate random field

Since is jointly measurable in (x, a~), so is Moreover

by construction, V(x, úJ) is bounded uniformly in (x, 
We will prove

LEMMA. 2014 For each t, 03BB there is a set Q c Q, (03A9)’ == 1, and a sequence ~n,
8n ~ 0 when ~ -~ oo, such that, if úJ E Q, strong limit + 

exists. Call this limit. 
_

Then U~(~)(~) is unitary for all úJ E Q and ~-measurable. D

Proof 2014 We shall prove that, for every ~ one has

Assuming for the moment the validity of (2.7), we complete the proof
of the Lemma.

be a denumerable basis in L 2([R3). From (2.7),

is, for each K = 1, 2, ... a Cauchy sequence in L 2([R3 X Q, v), where
v = ,~~ x ,u and is Lebesgue’s measure on [R3. It then follows that, for
each K E Z + there is a set = 1, and a subsequence 0, such
that, for all cc~ E A + ~K converges in 

Let Q = Therefore = 1.
KEZ+

Annales de l’Institut Henri Poincaré-Section A



345A QUANTUM PARTICLE IN A RANDOM FIELD

One can choose a sequence ~n ~ 0 such that, if 03C9 E Q,

converges in for all (the sequence {~} is a subsequence
of each { ).

Since + is norm-bounded uniformly in 8,

converges in for all 03C8 E as can be seen approximating 03C8 with
finite linear combinations of the Let be the limit point. From (2 . 7)
it follows that 03C8 ~ ~03C8(03C9) is linear and bounded, and in fact ~~03C8(03C9)~ = II 03C8 II I
(all norms being L 2([R3) norms) since the unit sphere is closed under sequen-
tial strong convergence. 

_ _ 
_

Therefore for each t, aL there exists a set Q c Q, ~(Q) = 1 (the set Q
depends in general on t, 03BB) such that, if 03C9~03A9, there exists a unitary operator

which is the strong limit of + t. Measurability
of follows since it is the pointwise limit of measurable functions.

It remains therefore to prove (2.7), which in turn is equivalent to

We shall use the following identity,

where the series is norm convergent for all ~ &#x3E; 0 and úJ E Q, uniformly
in co.
We shall refer to (2.8) as « Dyson series ». Notice that the left-hand

of (2. 8) satisfies the differential equation

where V,(t) = 
The series (2. 8) is obtained by iterating the integrated version of (2.9),

also called Duhamel’s formula, or « variations of constants ».

Substituting (2. 8) in (2. 7’) one sees that one must study the limit when
~ ~ 0 of
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(the exchange of the summation over m, n and integration over ti, Tj is

legitimate in view of the boundedness of the 
The integrand can be expressed as a formal series

Let Eo = max (8, 8’). Using the properties of the Gaussian integrals,
we shall prove that 380 such that, for Eo  Eo, the series (2.11) is absolutely
convergent, uniformly in 80. From this result (2. 7’) follows, since it is easily
verified that (2.10) has no terms of order zero in Eo.

In particular, one has

and the sum is over all unordered pairing of the points {xi}, each of which
is taken with multiplicity 2KI + 1. In (2.12), Kmn E Z+ is the number of
the times the point xm is paired with the point xn.
By carrying out explicitly all calculations one verifies that each integrand

in the serie (2.10) gives a contribution which is bounded in absolute value
... Y 
..

by ~ A~2~j~11 j= 1 2 11.p 112 independently of t 1 ... zm. The inte-

gration over t 1 ... 2m provides for each such term a factor tn + m(n !) -1 (m !) -1.
To prove absolute convergence of (2.11), uniformly in 0 ~ is

therefore sufficient to prove absolute convergence of the series

where represents the number of pairing among n + m points xi,
i == 1 ... n + m, each taken with multiplicity Ki, and we have set = ~
~=1...~.

To evaluate N, it is easier to count pairings in a somewhat different way.
Annales de l’Institut Henri Poincaré-Section A



347A QUANTUM PARTICLE IN A RANDOM FIELD

Let Kij i, j = 1 ... n + m be the number of times the pair (i, j) appears
in the pairing. Obviously

The number of pairing is then

We rewrite then (2.13) as

We now use the fact that, if (2.13) holds, then

and repeatedly Schwartz’ inequality to dominate the series in (2.16) by

where 2K, + 1 == 2K.. + K,;.
Now, and

moreover

Therefore (2.17) is dominated by

Vol. XXXIX, n° 4-1983.



348 G. F. DELL’ANTONIO

which is absolutely convergent uniformly in /),, ~ over bounded sets for
Bo2-5!2(11~lll)-1. D
We are mostly interested in the random evolution of quantum observables.

This is again defined by a limiting procedure.
Let

We have

THEOREM 1. 2014 For each t, ~, there is a set Q c Q, ~u~) - 1, and a sequence
0 such that, if 03C9~03A9 and strong limit A~n,03BB(t, úJ) exists. Call

the limit. Then A -~ is for each úJ a unitary isomorphism
of A with a subalgebra of B(L 2([R3)). Moreover is weakly ,u-measu-
rable for each t, /). and, for 

Proof -:- A part from measurability and (2 . 20), all remaining statements
of Theorem 1 follow from Lemma 1, and moreover one has

To prove the remaining two statements, it suffices to prove that, for
any given A E ~, ~ E L2(~3), ~,, t E R.

Indeed, from the strong convergence of to A~{t, for 
and Schwartz’s inequality, one concludes that for every ~ E L 2(1R3)
(03C8, A~n,03BB(t)03C8) converges in ,u) to (1/1, A03BB(t)03C8) and this implies measurabi-
lity and (2.20).
The proof of (2.21) follows the same lines as the proof of (2.7). One

starts from the Dyson series, obtained by iterating the integral version
of the equation

where A£,~(t) - 
The Dyson series for observables is

a norm convergent series in view of the definition ofV,. The proof of (2.21)
given (2 . 22) follows then the same steps as the proof of (2 . 7) in Lemma 1,
and we shall not repeat the details here. D

Annales de Henri Poincaré-Section A



349A QUANTUM PARTICLE IN A RANDOM FIELD

Remark. 2014 Notice that Theorem 1 and its proof provide also an explicit
formula for E(.p, One has indeed

From the proof of theorem 1 it also follows

COROLLARY. For every choice of t 1, ..., tn, ~, there is a set Q’, == 1,
and a sequence ~n ~ 0, such that if co E Q’ and E A i = 1 ... n, the

strong limit of AEm},~(tl) ~ ... ~ AEm~,~(tn) exists and coincides with

Moreover the latter operator is weakly measurable in co, and

for D

- Since the are uniformly bounded for £ 0 and

weakly measurable, the operators = and A~) = E(A~(~))
are well defined and belong to j~o since the process is stationary.

Similarly, ... ~ A~,n~(tn)) E ~o, but it is of course different
from A~,l ~(t 1 ) ... 

We now prove that all these operators are in fact in j~. Indeed one has

LEMMA 2. - For all choices ... 

and is jointly continuous in the tk’s. In particular the average dynamics
A ~ A~(t) is defined in j~ and continuous in t. D

Proo, f. shall give the proof only for n = 1. A part from notational
complications, there is no difficulty in extending the proof to the general
case.

From (2.22) one obtains in the Fourier representation

Vol. XXXIX, n° 4-1983.
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where po == pn = ~ and the third sum is over all permutations K  iK
such that tiK+ 1 if K  hand tiK  tiK+ 1 if K &#x3E; h.
The estimates given in the proof of Lemma 1 can then be applied to (2 . 25)

(there is an extra factor 2" in the estimates, coming from ; indeed this

perm

sum corresponds to summing over the 2n terms in the multiple commutator
which appears in (2. 22)) and they are uniform in 

Therefore converges to A03BB(t) in norm (recall that for each 03C9~
one had only strong convergence) and it remains to prove that E j~.

By the same estimates as above, the series (2. 25) is absolutely convergent
uniformly in p, and therefore it suffices to prove that .each term belongs
to ~.

Each term in (2.25) with h ~ 0, n can be put in the form

where K n C (and depends parametrically on ~,, t), while the terms
with h = 0 or n (and therefore ph = p) are of the form

where K 1 is a bounded continuous function of p.
Since A E ~, clearly K 1 A E j~.
To prove that E ~~, notice first that B(/?) is continuous, since K E L 1.

Indeed, for all y, ; y ; &#x3E; 0 and N &#x3E; 0 one has 
,

and this expression can be made arbitrarily small by first choosing N
sufficiently large and then I ~ I sufficiently small, using the continuity

To prove that lim B(p) = 0, notice that, since A E ~, given ~ &#x3E; 0
- 

~

there exists M£ such that  if p ~ &#x3E; M£, where K 11 is the

L2-norm of K. 
- 

1 
-

One has then, for 1£ &#x3E; Nt + Mt

since, if I  Ne and 1£ &#x3E; Ne + then 1£ - £’ &#x3E; Me. Q
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It follows from Lemma 2 that A ~ is a linear continuous map
of A into itself. It is given explicitely in (2. 23) as a norm-convergent power
serier in /L, but it is in general not differentiable in t; even for those A E j~
for which differentiability can be proved, no simple equation will be satisfied
by A;.(t). . 

_

We shall however prove in 94 that A;.Cr/Å2) converges, when ~, ~ 0,
to a Markov semi-group with continuous parameter r.

3. SOME PROPERTIES OF THE EVOLUTION

IN 
‘ 

THE LIMIT t = ~/~,2, /~0

We shall study in § 4 the limit t = z/~,2, ~, ~ 0 of the averaged dynamics
and of all correlation functions.

Here we provide some motivation to indicate which is the limit to be
expected, and we study the convergence of a sequence of Markov

processes T). somewhat related to the averaged dynamics.
A part from giving some hints at the mechanism which will be put

at work in § 4, we give here also some estimates which will be of use in the
sequel.
As a preliminary we shall study the operator

Obviously

Formally, A~~~/~,2~ satisfies the equation

where Ho - - 4.
This relation is only suggestive, since we have not proved that there

are cu E Q for which A~(~ is differentiable, even if only weakly.
We write formally

and substitute in (3.1), equating terms of the same order in ~,. This leads to

The first relation in (3 . 2) is compatible with A(0)(t, úJ) E A0 for all 03C9 ~ SZ1,
although it does not imply it. Due to the ergodicity of the process, one
has then A~°~(t, = E(A~°~(t)) for 
Vol. XXXIX, n° 4-1983.
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From the second relation in (3.2) we conclude then, at a formal level

(since = 0 1). 
--

Equation (3.3) is understood in the sense that, for all 03C8 for which the
integral converges for a. a .p,

where 03C8 is the Fourier transform of 03C8 E L 2(1R3) and V(/7, p’ ; 03C9) is defined

We now substitute (3.3) in the third relation in (3.2), again formally
since we do not control the domains of the generators involved, to obtain

We integrate over Q, and use the fact that, due to the stationarity of the
process, E( [Ho, A(2)(T)]) == 0, and moreover is independent
of co on a set of measure one. One obtains

where

Therefore,

Remark. - This heuristic argument would suggest that a stronger
result should be expected, namely that there is a set 03A91 c Q, = 1,
such that

for all 03C9~03A91.
We do not know if (3.7’) holds in a weak sense, with Q1 depending

on T and on the vectors in which enter in the definition of weak
convergence. Certainly (3 . 7’) cannot hold in a strong sense, since it would
contradict the result we establish for

Annales de Henri Poincaré-Section A
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The derivation of (3 . 7) given above is at best heuristic, as evident from
the remark above. Still, (3 . 7) is correct, as we shall prove in 94.
We shall do so by approximating E(A;.(T/Â2) by the solution A~(r) of

a suitable linear equation.
In g4 we shall prove that E(A~(T/~)) 2014 converges to zero in the

topology of j~ when )" ~ 0. Here we shall define A~(r) and prove that,
again in the topology of ~, converges to when ~ -~ 0.
We begin by noting that

when ~ÀCr/)~2) = exp T/À2)AÀ(T/)~2) exp ( - i~~/~~2) and that, according
to (2 . 23)

where

From (3.9) one should expect ~ 0 when /t -~ 0, due to some mild
mixing properties of the process and the local decay of for

large t. Indeed, this is what is proved in the classical case, using a priori
estimates for conditional expectations and some information on the

properties of « most » classical trajectories. We shall prove in § 4 that
D~(~) ~ 0 in the topology of j~. Motivated by this, we define to

be the (unique) solution of

Notice that is « sure », i. e. it does not depend on co.
Eq. (3.10) can be solved by iteration, which provides a norm convergent

series for all ~,, T. The solution is therefore unique, and this proves that
since, if A{ 1 ~(z) is a solution, so for 

In the Fourier representation one has explicitely

Let J~f be defined as in (3.6) and let exp - ~t be the semi-group it

generates (the existence of exp ( - is part of the proof of the next
lemma).

Vol. XXXIX, n° 4-1983. ~ 
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One has then

LEMMA 3. 2014 For all and r ~ 0, A(T) - e - ~z. A converges to
zero, when ~, ~ 0, in the topology of j~. D

Proof 2014 From (3.11) it is easily seen that  for some 0.
We write (3.11) in integro-differential form, taking the derivative with
respect to T, and then take Laplace transform.

For ,u &#x3E; Yo, define

From (3.11) one has

with

As a linear operator on ~0(~3), ~~,;,~ is accretive for all ,u &#x3E; 0. Indeed,
if f E Co([R3), let p_o be a point at which reaches its maximum (all our
function spaces are real).

Let lf be the element of defined by = We prove
that 0. Indeed, notice that == 0 =&#x3E; f = 0; assume then

0. Then

Since, by definition of /(~o)) ~ 0 VK E [R3, one has

indeed !/~/) ~ 0 
-

Since ~ is bounded, range (~ + ~o) _ for ~,o sufficiently large.
We conclude that ~~ is accretive for every ,u &#x3E; 0. Therefore its spectrum
is contained in {ç Re 03B6  0} and we can define, for all  &#x3E; 0,

Clearly A~ = A~;~ at least for ,u &#x3E; ~ since A~;~ is analytic for 0,
it follows that A03BB(t) has a Laplace transform for  &#x3E; 0, and A03BB;  = A03BB,

&#x3E; 0. Let be defined by = (2 - /~’ I) -1 A{ p) ; since ~ is
accretive (the proof is given as above) A~~~{p) is well defined for all ,u, Re ~c &#x3E; 0,
and is in fact the Laplace transform of 
From (3.15),. (3.14)

The right-hand side converges to zero in the topology of ~ ; since, for
,u &#x3E; 0, I - ~~,,~) is bounded away from zero uniformly in ~, &#x3E; 0, we
conclude A03BB,  - A( ) ~ 0 for all  &#x3E; 0, uniformly in 0  ð  ,u  N.
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From this it follows that A~) - 0 in the same topology. D

Some information on the structure of the limit semi-group Tt = ~~
is provided by the following

LEMMA 4. - The semi-group Tt is a contraction semi-group on j~.
It is reduced by each ball Ba3~ : ~ p ~ ~ p ~ I  a ~ and defines on each sphere
S~3) : {£ I I p I == ~ } a contraction semi-group. On each sphere, the constant
function is left invariant by T~.

Proo, f : have already proved that 2 is accretive. Therefore Tt is
a contraction semi-group. Next, we notice that, if f E has support
contained a  p ~  b ~ for some a, b &#x3E; 0, then Ttf has support
contained in the same set. This is evident from the definition of J?, and
the fact that is given by a norm-convergent series in t.

Consider now on (continuous functions on the sphere of radius
one in 1R3) the family of operators

where a &#x3E; 0 and p) _ ap).
One verifies easily that, for all f E 

where ~ f a(~) _ , 
The operators 2 a are accretive for every a &#x3E; 0. Let be the associated

semi-group. From (3.18) one verifies that

in the natural decomposition of Cü([R3B0) as a subspace of 
0

Constant functions on are left invariant by since ~a ~ 1 - 0. D
Assume now that  a satisfies for every a &#x3E; 0 a strong form of Doeblin’s

condition, i. e. for every ~ E Sa3~, B c Sa3~, ~an~( p, 0 for some
B

cient condition for this to hold is that ~(~) has compact support, or exponen-
tial decay.
One has then

COROLLARY. 2014 Under the condition stated above, the constant function
on is a global attractor for the semi-group Tt. Given any function
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g E Co, Ttg converges when t -~ oo towards g, where g is a function only

Proof 2014 Under the stated conditions, 1 is the only eigenvector of T~a~
to the eigenvalue zero. The corollary follows then from standard properties
of contraction semi-groups. D

2014 The physical description behind Lemma 4 is that the random
force field, in the limit in which ~, ~ 0, does not alter appreciably the
energy of the particle, even if it acts for a time of order ~,- 2. On such a
long time scale however the momentum of the particle undergoes changes,
in such a way that, on a still longer time scale (r ~ oo), its distribution
becomes uniform on the mass shell.

4 CONVERGENCE TO THE MARKOV LIMIT:
CONVERGENCE OF DYNAMICS

Let be defined as in Theorem 1; in this section and in the following
we shall study the limit of ,

when ~, -~ 0, when E j~ i = 1 ... n, and T 2 ~ ... ~ In this

section we consider the case n = 1, and prove

where T, is defined as in (3.7), (3.6).
This will be the content of Theorem 2.

Before stating the theorem precisely, we perform some preliminary
operations and prove two lemmas which will be used in the proof of
Theorem 2.
From (3.8), (3.10) it follows that, setting

where is defined as in (3.9)

If one can prove that D~r) -~ 0 when}1. ~ 0, then (4.1) follows from
Lemma 3 and an application of Gronwall’s inequality.

If one had for the present quantum-mechanical setting the definitions
- 
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and a priori estimates, one has in the corresponding classical situation,
one could provide a « probabilistic » proof of (4.3). Since we lack at the
moment these instruments in the quantum case, our proof will be ana-
lytical, and based on the Dyson expansion given in § 2.
We believe that a more straightforward probabilistic proof exists, but

we have been unable to find it. See however the remarks at the end of § 1.
In view of the structure of the integrands of the terms of the Dyson

series (see e. g. (3.11), and in particular of the occurence of terms of the
form exp i{03A3K2m(03C4lm - 03C4lm-1)}, coming from the eiH0t in 
the following two lemmas will be important in the proof of (4 .1 ).

== i,! G 11).
Let Q be any symmetric N x N matrix, and for 0 ~ M ~N let be

any of the M x M matrices obtained by deleting in Q, N - M rows and
the corresponding columns, with the convention = 1, = Q.
Then there exists a constant C &#x3E; 0, which depends on v but not on N,
such that, for all 0 ~ M ~ N

when

Remark. 2014 It is easy to see, considering the case N == 1, and Q = f I,
that the statement of Lemma 5 is closely related to the local decay of wave
packets in Quantum Mechanics (see e. g. [7 ]).

In the case N &#x3E; 1, some information is contained also about the relation
between spreading of the wave packet and motion of its « center of mass »;
since this relation is also relevant to define multiple scattering, our proof
probably contains in a hidden form an estimate on the probability of
time-correlations due to multiple scattering. A better understanding of
this relation could probably be used to improve effectively on the analysis
given in this §, and to make direct connection with the proofs which have
been given in [3 ], for the classical case. It should then also bring about
an understanding of the deep reasons for the existence of the classical
limit. We hope to come back to these points in the future.

Proof of Lemma 5.2014 We begin the proof by considering the case N == 1,
v = 1.
. 

We must in this case estimate
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Obviously ! S(~)! ~ 11 for all ~, E R. Also, since ~ S(Â) is the boundary
value, when Im z ~, 0, of the function

defined and analytic in ~ z ~ Im z &#x3E; 0 } .
Therefore

Since e-EK2 E L 1 (R) for every E &#x3E; 0, and ~ E we can use Fubini’s
theorem and conclude

where we denote the square root of 03BB + f8 which has non-
negative real part.

For all 6 &#x3E;’ 0,

Therefore

integral on K can be computed explicitly, to give

We conclude that, 0

o == 0, inequality (4. 8) is obviously satisfied.
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One has therefore

and therefore

We have thereby proved Lemma 5 in the case N == 1, v = 1. The case
N = 1, v arbitrary follows immediately. It suffices to notice that

We now prove Lemma 5 for arbitrary N, v.
Since Q is symmetric, one can find an orthogonal transformation T

and real number ~,1 ... ~,N such that

where

Since by assumption the product ... ~(l ) is an element 
and its norm is II ~!!? since T is orthogonal,

Let now be the M x M matrix defined by = Qi~ if fj= 1 ... M,
Q(N-M) be the (N 2014 M) x (N 2014 M) matrix defined by == Qij if

= M + 1, ... , N, be the M x (N - M) matrix defined by
... M
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Then

. 

After a linear change of variables pi ~ pi + li({p}) = 1 ... M,
where li are suitable linear homogeneous functions of the &#x3E; M, and
using translation invariance of Lebesgue measure, one can apply (4.11)
to obtain

uniformly 

for all 0 ~ M ~ N, where is defined in the statement of the theorem

(the N - M rows which are deleted can always be defined to be the last
ones). D
The proof of Lemma 5 applies verbatim to provide

LEMMA 5’. - Let notation and assumptions be as in Lemma 4. Let
moreover i = 1 ... N1, N1  N. Let i = 1 ... N 1 be
any linear homogeneous combination of the Then, for all 0 ~ M ~ N

Finally, since for every 0  a ~ 1 and a, b &#x3E; 0 one has min (a, b)  
one has the following 1 corollary
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COROLLARY. - With the notation of Lemma 5’, and Q M2~ any
two reduced matrices, one has

1.

In particular, choosing § M1 1 == N, M2 = 0

for all 0  03B1  1. D
We turn now to the proof that ~ 0 when ~, -~ 0. We use in (4. 3)

the Dyson series (3.11), to obtain

where E’ stands for integration over the Gaussian random field, with
the prescription that all terms containing E(V(t 1 ) ~ V(t2)) as a factor should
be dropped.

It will be useful to have a graphical description of (4.17); this will give
a convenient bookkeeping prescription. We shall give it here for the case
in which V is a Gaussian random field; it can be extended to cover the

non-Gaussian case, provided V has suitable mixing condition (See § 6).
There are 22n terms in the nth summand in (4.17) (a factor 2 for each commu-
tator) ; each of them by the rules of Gaussian integration is expressed as
the sum of (2n - 1) ! ! terms (number of possible pairings; we neglect for
the moment the prescription which distinguishes E’ from E).
To each of these 22n ~ (2n - 1) ! ! terms we associate a graph, obtained

with the following prescription.
Suppose one is considering the term

Mark on the real line 2n points, and label them til ... from left to
the right.
Connect now pairwise with arcs yi in the upper half plane, i == 1 ... n,

the labeled points. There are (2n - 1) ! ! ways of doing so; each of the
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graphs so obtained corresponds in a natural way to one of the 2n(2n - 1) ! !
terms in (4. 8).
We shall also agree to put a mark * in correspondence to the position

of the observable A in the term considered. If, e. g., one is considering the
term one of the possible graphs will be

It is obvious, from the multi-commutator structure, that on the right of
mark ~, the times appear in increasing chronological order (from left to
right), while they are in decreasing order on the left of *.
We shall use the following notation : is the arc connecting ti with tj

(so that = is the interval of length (the
shadow of y) is the interval between the vertices of y _; ~ the order of r,
is the number of arcs in r.
With this notation, the prescription 17 in the definition of D}J!) is the

following : the graph r cannot contain the arc y 12.
Consider now a graph r of order n. Let Cr be the corresponding term

in D;(r). One has

where li E R3, Li E R3, L E R3 are linear combinations of the K’s and we
have used the notation

It is convenient to regard Km as the momentum associated to the 6K,
and ti as the momentum associated to the arc Yb while L is the momentum
of the interval which contains the mark *. Then the li and Li are completely
determined by the prescription that momentum be conserved at each
vertex of the graph, and p be the momentum associated to the external
lines.
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For example, in the graph of Fig. 1 one would have

With the change of variables

and performing the integration over Km, ~=~+1,...,2~-1, one
verifies that Cr has the form

i. e. a form suitable for the application of Lemma 5.
The matrix Q in (4.20) can be obtained according to the following

prescription (see also [6 D.
For the given graph r, order the arcs of r according to the order of

their left vertices.
Then one has 

__,

Also, if is a graph obtained from r deleting N - M arcs, the corres-
ponding matrix can be obtained from Q by deleting the corresponding
rows and columns.
We now return to (4.2), (4. 3) and write them in a form which is conve-

nient for our later estimates. We shall then give a « graphical interpretation »
of the new setting.

Writing BA for and with the agreement that from now on conver-
gence is in C(O, T ; j~), we rewrite (4 . 2) as

where K~ : C(O, T ; j~) -~ C(O, T ; j~) is defined by the first term on the
right hand side of (4.2).

Similarly, we write now _

where as usual = that defined in (4 . 2’),
can also be written
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Define now

One has then, for all A E B(H),

Using repeatedly (4.2’), (4.24), (4.25), one has

where

(we have used the fact that odd moments vanish).
Writing

00

as an operator on C([0, T ], ~), one has finally

Since U~, is bounded uniformly in ~, for 0 ~ /). ~ 
VÂ : 0  ~,  ~o (here II = sup II we are left to prove that- 

W~ -~ 0 when ~, ~ 0. Indeed, for ~, sufficiently small, 1 - U~W~, is inver-
tible, and (4. 30) allows then to conclude that E(AÂ) - A~ -&#x3E; 0 when
~ ~ 0.
We shall prove that W~ ~ 0 by first performing a suitable resummation

in (4.28), to write

where the W~ will be defined presently, and then proving convergence
to zero of each W(~ and uniform convergence of the series in (4 . 31 ) for
0 ~ ~ ~.
The graphical representation of the operator W~ will be useful. It is

straightforward to see that, from the definition given, (W~ o A)(p) is the
contribution from graphs of order 2n, such that for no integer m  n
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the first 2m vertices (in chronological order) are disjoint from the remaining
2(n - m). We call such graphs « tight ».

As a preliminary step we prove

LEMMA 6. 2014 The contribution from a tight graph vanishes in the limit
~ ~ O. D

Proof 2014 For any graph r of order n which is tight, let be a reduced

subgraph with the following property : for all 0 ~ E  1/2 one has

where QM is the matrix associated to the subgraph 
Such subgraphs always exist for a tight graph; it suffices, e. g., to consider

the sub graph composed of only one arc, which either intersects or graph-
shadows some other arc in r.
From (4.14) one concludes that the contribution Cr from r can be

estimated by noticing that

for all 0  03B1  1.
By (4. 32), the r. h. side " for 1/3  a  2/3. Therefore "

Remark now that Q is a homogeneous polynomial of order n, while
QM is homogeneous of order M (M ~ 1).

Scaling ti ~ )" - 2,! . si one has then

/ 2 M
Choosing ex such that 2/3 &#x3E; a &#x3E; sup 1/3, - ~ 1 2014 2014 j the conclusionof Lemma 6 follows. D B 3 ~//

There are at most (2n - 1) ! ! tight graphs of order n contributing
to From (4 . 35) the proof of convergence of ~V~ to zero, when ~, -~ 0,
is achieved if one can prove that

A : one can choose rM so that M/n remains bounded away from zero
when n  oo,

B : the integral is dominated by n-1 for some C &#x3E; 0.
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, Indeed, if this is the case, one can choose a, 1/3  a  2/3, independent
of r, so that the sum of all contributions of tight graphs of order n vanish
as /~, + ~~a)n for some &#x3E; 0.

It is intuitively clear that, the more « complicated » (i. e. interlocked)
is a graph, the bigger one can choose M/n. « Very simple » graphs would
instead lead to small values of M even for large values of n.

Consider, e. g., the graph hn

This is a tight graph, but it is straightforward to prove that M = 1
independently of n.

Indeed, the only subgraph such that

is the one composed only of the arc 
We shall prove however that the only « dangerous » graphs are the ones

which contain one or more arcs ot the type 1 for some 1 ~ K ~ N,
which are disjoint from the remaining arcs in r.
The resummation indicated before (4.31) will then consists in a resum-

mation over all graphs which differ only for the presence of one or more
such arcs.

Before giving the proof, we pause to provide a physical interpretation.
An arc represents a « rescattering process, i. e. a process in which
there are correlations between two interactions which occur successively
in time. It is known that rescattering is the source of most difficulties in
the treatment of diffusion in a random medium.

It is also known in applied mathematics and physics how one should
try to circumvent this difficulty : one should describe the process in terms
of an « effective » propagation rather than « free propagation » between
successive interactions. Rescattering goes then in the definition of « effective
propagation ».

Technically, such effective propagation is described by a resummation
over a set of graphs.
Our approach will be much in this spirit. As we shall see, we shall be

able to give an estimate of the absolute value of the ratio between effective
and free propagator, uniform in 0 ~ ~ ~ ~.o and in T over compact sets.
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While no such bound will be found on the phase, the uniform bound
on the absolute value will suffice, through Lemma 5’, to prove convergence
of W~, to zero, when /L -~ 0, uniformly in T over compacts of R + .
Prompted by this physical interpretation, we introduce a few more

notation.

5. ANALYSIS OF GRAPHS

Let [n 2] be the smallest integer which is not smaller than -.
Let r be a graph. We say that y E r is disconnected if it does not shadow

or intersect any other arc of r.
We say that E r is a rescattering arc is disconnected and j = i :t 1.

We say that r is rescattering-free if it contains no rescattering arc.
If r is of order n and rescattering-free, we shall construct a class M

of subgraphs rM, M E M, all of order  [n 2] and such that

for all 0  03B2  03B1  1/2.
Let r be rescattering free, and disconnected. Then

Ko + K 1, K2, such that Ko E 
Therefore the submanifold of In03C4/03BB2 defined by tK2 - tKl = 0 has co-

dimension at least two, so that (tK2 - 1 + ð is integrable over In03C4/03BB2
for ~ &#x3E; - 1. ,

In its dependence on tK2 - det Q has the form

where {3Q is a polynomial in the remaining tm’s.
Therefore, if is constructed in such a way as to contain yKiK2 and

a subset of the other links, and if in an open domain D c R2n - 2 the mani-
fold of zeros of {3Q intersects transversally the manifold of zeros of 
then

for 0 ~ ~ 1/2, where 1(2) = {0 ~ ~ ~ ~2 ~ z/~2 ~ .
On the other hand, suppose {y i ... are the arcs of a cluster (a

maximal connected subgraph of r) with s &#x3E; 1, and let ~i ~ - ’ ~ tK2S
be the corresponding vertices. Det Q is a polynomial in tK1, ... , 

let be its manifold of zeroes, which of course depend parametrically
(in fact, rationally) on the remaining t’s, which we denote by thi ... 

Let M = { ~ ... y~ } be a subset of { y~ 1 ... y ~ , ~ = [~J and consider
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the graph obtained from r deleting the arcs ym which are not in ’M.
Denote DM the subset of z/~,2 &#x3E; such that

Then U DM == {03C4/03BB2  th1  ...  th2n-2s  O}, where 1M is the col-MEM

lection of subsets of { ~ ... of order - .
Therefore

if it is in L1 over U DM when considered as a function of the variables
MEM

Repeating inductively this procedure, first for those arcs which arc
disconnected from the rest of r, and then for the clusters of order ~ &#x3E; 1,
one concludes that there exists a collection M of subgraphs r~, M E M,
of such that

for0~ jg ~ o( ~ 1/2.
From (4.14), setting TO = sup (1, T) and taking ~,  1, by suitable rescaling

and using the fact that det Q and det are homogeneous polynomials
in the variables ti, one has

1/2.
We must now give a bound on the contribution to WA coming from

all tight rescattering-free graphs of order n. Since there are at most (2n - 1) ! !
such graphs, it will suffice to prove that the integral in (5 . 3) is dominated

1

by - C~ for some Cn &#x3E; 0.
n.
Since the integration domain is triangular, one may in fact have expected

a factor (2n !) -1. This is not so, since the integrand is not integrable over
all permutations of I1. This is due in particular to the fact that it contains a
factor (tiK - each disconnected arc.
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1
From (5. 3) it is seen that we must require - + ~8 &#x3E; 2a, i. e.

the factor considered is integrable in 11 only because the graph is, by
assumption, rescattering free, and therefore EtKo such that tiK+ r

It is however easy to see that integrability will still be guaranteed in
all sectors obtained from I by permutations which are such that the
end points of a disconnected arc are permuted with the end points of another
disconnected arc. The graph r will be rescattering-free also in these

permuted sector.
It is easy to verify that there are at least n ! such permutations.
It remains to give a bound on the integral on each such permuted sector.
By repeatedly using the inequality

and the properties of M, one can prove that each sector 7r(I) can be parti-
tioned in at most 22n subsets ~~ = 7:(I), such that in xf

i

where  su 1 - 
2 
a - 1 - a 1 + and the t t can be chosen

to be independent linear combinations of the f = 1 ... 2n.
The Jacobian of the transformation t ~ l is  42n.
Therefore

Take now a = 
4, {3 = -. 

Then 
12 dK’ 

so that
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From (5. 3) one has then that ~n, the contribution to WÀ from all tight,
rescattering-free graphs, is bounded by

for Co sufficiently large.
Consider now the « rescattering » graphs, i. e. those graphs which are

not rescattering-free.
As a set, they can be obtained introducing rescattering arcs in rescattering-

free graphs.
For each r, let T° be the (rescattering-free) graph obtained from r by

dropping all rescattering arcs. We call r° the skeleton of r, and r an orna-
ment of T°. Of course, we allow r = r°, i. e. a skeleton is one of its own
ornaments.

Denote by fo the set of all ornaments of the skeleton r°. Let ~° be
the collection of all skeletons. Then ~03930 is the collection of all graphs,
each counted once. For each ro, let Cro be the contribution to W~ coming
from the graph r°, and Cro the sum of the contributions to W~ of all orna-
ments of T°.
We shall give an estimate, uniform in 03C4 over compacts and in 0  03BB  1

of Cfo! in terms of .

We shall then use this estimate, together with the previous result on
skeleton graphs, to prove convergence of to zero, when /). -~ 0, uni-
formly in 03C4 over compacts of R + . Let r° be a skeleton, with vertices ti1 ... ti2n,
and with a given set of arcs. 

-

An ornament r of r°, if F 4= r°, is obtained by inserting rescattering
arcs in one or more of the intervals 6K of fo. As we have already remarked,
if ... are the vertices of the mK arcs inserted in 0’ K, one has

This is a consequence of the commutator structure of the terms which
we represent graphically.
For the same reason, the mark * which we have used to keep track

of the multiplication by A, is never covered by a rescattering arc.
Consider now the contribution Cr to W~, coming from a graph r which

is an ornament of r° obtained by adding mK rescattering arcs in o~
K=1 ...2n-1.

Call = 1 ... 2mL + 1 the momenta of the intervals of r contained
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in the interval 6K of T°. Call 6iK~, = 1 ... 2mK, the vertices of 
contained in 6K, and denote by pK the momentum of 6K in r°.

Then, according to (4.18), the expression which defines Cr differs

from the one which defines Cro by the presence of the extra integration
variables ~~B and of the corresponding (5-functions and factors of the type
exp (iK2(6 - o~))~(~(K)). Due to the rescattering nature of the arcs added,
the new b-functions imply that ~2n~-1 == = ~ ’ - -~K + 1. But then
the exponential part of the integrand takes the form

Moreover, the t~K~(~) which appear in (4.18) are linear functions of the 
and of the with coefficients which depend only on K.
From this analysis, one concludes that, if Cro is given as in (4.18), then,

after setting ti = T)~ - 2

where

d I0393|0393003C4iK,03C4tK+1 
. 

b t f  03C31  ...  03C32mk  03C4ik+1 .f and 
1 

is a subset 0 03C31  ... " 03C32mk  2iK+ 1 1 03C4iK+ n :

or of 61 ...  03C32mK  03C4iK+ 1 
lf 2iK  03C4iK+ 1, 

determined by r I 03930
(recall that, while s2i is the chronological successor of S2i-1 for all i, it

need not be true that s2i+ 1 be the successor of S2i).

Vol. XXXIX, n° 4-1983. 14



372 G. F. DELL’ANTONIO

Notice now that the integrand in (5 . 6) is symmetric under permutations
of the values of the index i. Therefore

where 
+ 1 

is the union of the 
I 

over all permutations ~ of1

the index set 1 ... mK, such that

and a corresponding expression if 03C4iK  03C4iK+1.
It follows that

is the product of the terms of order m1 ... in the expansion of the
exponentials in

where

Recalling that r was obtained adding mK rescattering arcs in the Ktn
interval of we conclude that, if
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then is given by an expression which differs from (5.10) only by
the additional factor

where is given by (5 . 9).
It is now evident from (4.22) and Lemma 5’ that, in order to extend

to Cro the estimates given for Cro, it suffices to prove that there is a constant
C &#x3E; 0 such that, uniformly in v over compacts of R + and 0  ~, ~ 1

where II B(.) 1100 
peR3

In turn, (5.12) will follow from the estimate

uniformly in 6 over compacts of R + and in ~, in [0, 1]. ’"

We shall now prove that, under the assumptions made on ~, (5.13)
holds for a suitably chosen constant C1.

Setting ~2 - s~,2, we must study

Since G E L by assumption, ~ is continuous, moreover, again by assump-

Therefore

holds uniformly in and o in a # ao~,3~2. To evaluate ~ (5.14),
we divide the integration over 03C31 in the two intervals 0  (J 1 a003BB3/2,
ao),,3/2  61  6. If 61 ~ ao,~3~2, one has

Therefore

uniformly in p~R3.
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On the other hand, in view of (5.15)

the limit being uniform for £ E R3.
Let

and notice that, for /). &#x3E; ~ ~C3(~,o) such that

From (5.17), (5.18), (5.20) one concludes that (5.19) holds uniformly
in 6 over any compact K for a suitably chosen Ci 1 &#x3E; 0 (of course C1 depends
on K).
From (5.4), Lemma 5’, (5.12) and the estimate (5.2) we conclude that

the contribution to W~, from all tight graphs is dominated by the series

for 1/3  a  2/3. We shall take a = 1/2.
For ~,  ~.o(~, ~ 1, zo) this series is absolutely convergent, and

therefore the series converges to zero when ~. -~ 0, since each term con-
verges to zero in that limit.
The series (5.21) dominates ; therefore W~ -~ 0 when /~ -~ 0,

uniformly in T over compacts.
From (4.31) and the uniform boundedness of U Â we conclude that

uniformly in T over compacts of R +.
We summarize this analysis in

THEOREM 2. - Under the assumptions G~L1, G~L1,

one has
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in the sup norm, uniformly in r over compacts where Tt is defined
in (3.6), (3. 7). D

Before closing this section, we would like to make a short comment
on estimate (5 .13). It is easy to see that no such estimate would be available

- ont he imaginary part of the integral, i. e. on the phase of the factors DK,
when ~, ~ 0. This fact is very closely connected with the problems one
would encounter if one were to study the Van Hove limit for the evolution
of states rather than of observables (this added difficulty is sometimes
called Casimir effect). one could for example study

in the limit ~, ~ 0.
For ~, =t= 0, (5 . 22) is well defined, in view of § 2.
One can use the Dyson expansion in the study of (5.22) and attempt

a proof along lines similar to the ones above.
A graphical analysis can still be done, but a major difficulty comes here

from rescattering graphs, mostly because one cannot control uniformly
the phase in the integral (5.13).

6. CONVERGENCE TO THE MARKOV LIMIT:

CONVERGENCE OF CORRELATIONS

We have seen, in § 4 and § 5, that the average of the dynamics for trans-
lation-invariant observables converges in norm to a Markov semi-group,
uniformly in time over compacts.

It is therefore natural to expect that all correlations between observables
at different times converge to the correlations given by the Markov semi-
group.
We prove this result in the present section. We have

THEOREM 3. 2014 Let the conditions on V be as in Th. 2, A~(~)(~) be defined
as in Th. 1, and T, A as in (3 . 6), (3 . 7).

Let A (1), ... , be arbitrary elements and choose T 1 ~ T 2 ~ ... ~ zN.
Then, in the norm of ~

uniformly in zi over compacts. D
Let U~(~)(~) be the unitary group which implements the isomorphism

A ~ A~(~(~). 
_ _

Recall that is, for cv E ,u(52~,,t) = 1, the strong limit along
the sequence ~n~0 of where 
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If H is self-adjoint, and are bounded operators which commute
with the following identity is readily verified :

where HS == 
WesubstituteH  = Ho + in (6 . 2), and takethelimitn  oo.

This can be done because strong convergence is guaranteed by Lemma 1
and there are only a finite number of involved. One obtains an identity
of the form (6.2), with the substitution ,

where U~(t) = 
Iterating (6.2), and taking the average one has

Recall now that, from Theorem 2, uniformly in p, v and uniformly in 6
over compacts one has, in norm convergence

In fact, the 1. h. side of (6. 4) is independent of p, v due to the stationary
character of the random field V.

It follows then that, setting tK = zK - ~, - 2,

To prove Theorem 3 we must then prove that the difference between the

left-hand side of (6 . 5) and the right-hand side of (6.3) vanishes, when
/L -~ 0, in the norm of ~, uniformly over compact sets in the ii’s.
Once again, we use Dyson’s expansion for and a representation

in terms of diagrams.
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It is not difficult to verify that the r. h. side of (6.3) can be written in
the form

where defined by

In deriving (5.6) one has used the fact that, by definition,

Expansion (5 . 6) admits a diagramatic analysis, using the rules of Gaussian
integration, much in the same way as described in § 4.
The difference between the 1. h. side of (5.5) and the r. h. side of (5.3)

can then be estimated, using a formula analogous to (4.31), in terms of
the contribution of tight graphs. Indeed, (5.6) differs from (4.17) only
because of the larger number of present, as can be seen by relabelling
the times Conversely, (4.17) can be regarded as particular case of (5 . 6),
obtained setting A~‘} == I, i == 2 ... N, A (1) = A. (Strictly speaking, this is
not correct, since ~ does not contain the identity. However, there is no
difficulty in extending the results of § 4, 5 and of the present § to cover
the case A E.s;!, where ~ is the smallest C* algebra which contains the
identity and j~.)

In view of Lemma 5’, the presence of some extra factors in (4.7)
causes only very minor modifications in the estimates needed. In particular,
the analysis of § 5 in terms of rescattering-free graphs and of their ornaments
carries over without modifications to the present context. In particular
notice that, due to the form of (6.6) and to the structure of the set 
no symbol * corresponding to one of the can be shadowed by a rescat-
tering link.

Since there are only very minor but tedious modifications to the analysis
performed in § 4 and § 5, we omit here the details. D

Remark. 2014 The same result would have been obtained if one had studied
the limit, when ~, -~ 0, of

Indeed, (6.7) is the adjoint of the 1. h. side of (6.1) if the are self-

adj oint, as an element of A, while ... T03C41-03C42A(1) is self-adjoint.
Vol. XXXIX, n° 4-1983.



378 G. F. DELL’ANTONIO

It is perhaps interesting to remark also that the limit would have been
different, and in general not connected with a Markov semi-group, if one
had considered (6 . 7) with an ordering of 03C41 ... TN which is neither chrono-

logical nor anti-chronological.
Technically, this comes about because in this case there would be an

overlap between the ranges of the in (6 . 6) for different values 
This fact allows for a larger number of rescattering graphs, and also

for the fact that some of the * marks could be now shadowed by a rescattering
arc. All these terms are more difficult to control.
Of course, more detailed assumptions about the could improve the

situation, as can be seen from the following very trivial consideration : if
the which violate chronological (or anti-chronological) order are

replaced by I (the unit element in then Theorem 3 holds.
More generally, one can see that a necessary condition on A (iB if zi is

neither the successor nor the precessor of zi + 1, e. g. if Ti &#x3E; &#x3E; 

is that Tti - 1 - ti . A~~~ be well defined (notice that here T  0).
We shall not pursue further here this point.
Before closing this section we want to remark briefly on the assumptions

made and on the method of proof.

A) The assumption that V be Gaussian is not crucial and has been made
only to keep the level of formal complexity within reasonable limits.
Our results, i. e. Theorems 1, 2 and 3 are valid under the following much

weaker (and perhaps natural) conditions : Every correlation function

can be written in the form

K

when 03A3ns = n, f is the collection of all partitions of the set {x1 ... xn}
in subsets, the « connected components» are translation invariant,
i. e. ... xm) = 1 

- x2, ... , xm -1 - xm), and moreover

The functions are called often Ursell functions in statistical mechanics,
and (6.8) is referred to as Ursell expansion of the correlation W.
The are obtained from the W using recursively (6 . 8) ; they exist

and have property (6.9) under very mild assumptions on the random
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field V, and reflect a suitable « mixing » property. We still assume E(V(x)) = 0,
so that U2(x - y) = E(V(x)V(y)). At the next step one obtains, e. g.

The Gaussian random field is characterized by = 0 for p &#x3E; 2.

The analysis of § 5 can be repeated using (6 . 8) instead of the rules of
Gaussian integration (which of course coincide with (6.8) when V is

Gaussian).
One will now have a larger number of graphs ; an end point can belong

to more than one link. For example, one can represent ... V(t4))
with the graph

The definition of tight, rescattering-free, rescattering additions, ornaments
is the same as before.
Due to (6.9), there will be in general fewer ð-functions in expression

such as (4.18), and therefore the matrix Q in (4.22) will be of order  n,
and one will have some U instead of some of the factors ~.

Det Q will then be a polynomial in the ti’s of order &#x3E; n. The scaling
g(n+K)

done in (5.3) will produce now, for the graph of order n, a factor ~ ,

K ~ 0 (depending on the graph) ; the estimates on the integral still hold,
with an extra factor C~.

Estimating, as done in § 5, the number of graphs of order n one proves
then that Th. 2 (and Th. 3) hold if there is a constant a &#x3E; 0 such that

and ~(x - Y) = U~2 ~(x - Y) = E(V(x)V( Y))~
From the proof of Theorem 1 it is not difficult to see that also Th. 1

holds under condition (6.10), and in fact under the weaker condition

We shall not detail here the simple but very tedious proof.

B) The assumption that V admits moments of all orders, so that

W(xl ... is defined for all is most probably an artefact of
our method of proof, based on estimates on the full Dyson expansion.
From (4.32) one feels that it should be possible to provide a priori

estimates, of the martingale type, using some form of Gronwall’s inequality
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and the mixing properties of the random field V, without assuming the
existence of momenta of all orders. This is indeed what can be done in
the case of a classical particle in the random potential V, because there
one has, for ~. &#x3E; 0, a genuine Markov process in ~, ~).
We have been unable to find such martingale-type estimates, although

the results of § 5 strongly suggest their existence. It is very plausible that
steps in this direction could be taken using the description of the evolution
of quantum observables through Poisson point processes advocated e. g.
in [8 ]. We shall not pursue here this point.

7 . CONVERGENCE TO THE CLASSICAL LIMIT

In [3 ], it is shown that, under rather mild conditions, the momentum
process of a classical particle in a random force field converges, in the
Van Hove limit, to a diffusion process. If the force field is conservative,
this diffusion is reduced by each sphere Sa c R3, a &#x3E; 0 (here

It is therefore natural to inquire whether there is a limit, when ~ --~ 0,
of the Markov process described in § 3, and in particular whether this
limit is precisely the diffusion associated to the classical case.

In this § we shall give a positive answer to both questions.
We begin by noticing that, when ~ 5~ 1, the natural representation

of j~ by C([R3) is through the Fourier representation of L 2([R3) given by

This comes from the fact that one is interested in a representation in which
the observable [Pi (the ith component of the momentum) is represented
by multiplication by the coordinate function pi.

~ 

The map (7.1) has this property, since

The evolution of the observable A is given by

where H = - h20394 + )"V.
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Taking these explicit dependences on h into account, one obtains, for
the limiting semi-group studied in § 3, the expression

where

Setting == one has

Since 211 defines a Markov semi-group, and therefore a closed Dirichlet
form, it is natural to seek convergence when ~ -~ 0 in the sense of Dirichlet
forms. This will also imply convergence of semi-groups. For a direct proof
of strong semi-group convergence, see e. g. [10 ].
The Dirichlet form associated to 2 is

with domain

We now remark that ~(l) is symmetric (and real) since

Therefore (7.4) can be written

In view of the fact that ~ E and under a further assumption on ~ which
guarantees among other things the existence of the integral (7.7) below,
we expect that ~~ converge, in the sense of forms, when ~ -~ 0, to

where
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The (closed) Dirichlet form ~o is associated to a diffusion process with

generator ~f defined by

which is precisely the generators of the diffusion one obtain in the Van Hove
limit for the momentum process of a classical particle in the random force
field which has - V as potential.
The formal convergence of ~h to G is obvious.
To give an actual proof of convergence, notice that the Dirichlet form GO

is reduced by each sphere S~, C &#x3E; 0, and defines there a diffusion semi-
group which has as generator the formal reduction of 2 to S~.

Also ~h is reduced by each S3C; denote ~Ch such reduction.
For all smooth functions f , g on S~ one has then

where p, p’ are vectors of lenght C.
For ~ e S~, let the set be defined by

Then

Notice that, uniformly in compacts of [R3, the manifold tends, as
~ --~ 0, to the manifold defined by

Let f be a differentiable function on S3c. Then, for p, p.’ E S3c,

with y f &#x3E; 0.
Assume further that there exists a function P ~ 0, such that

and such that

(this is of course the case if ~(t) is rotationally-invariant). Then

~ch(f, g)  K03B3f03B3g uniformly 0.

Moreover
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where

with EE /(cK) for k E S i .
Since C 1 functions are a core for Eo, it follows that J5f converges to J~o

in strong resolvent sense, and therefore ~ exp strongly.
We summarize these results in

THEOREM 4. 2014 Under the assumptions (7.10) and (7.11) the Markov
semi-group described in § 3 converges strongly, when ~ -~ 0, to the diffu-
sion semi-group which describes the Van Hove limit for a classical particle.

~’roo, f. 2014 We have already proved strong convergence on each sphere S~ ;
convergence is in fact uniform, as easily checked, for c over compacts
in (0, (0).

Consider in L 2(R 3) the set of functions of the form

where f has compact support in (0, oo).
Since all semi-groups involved are reduced by each sphere S~ , and

convergence holds strongly on each sphere, uniformly for c over compact
of (0, oo), it follows that strong convergence holds for all functions of the
form (7.14).
We now remark that is non-positive, and so are f£ /1’
Since the set (7.14) is dense in L 2(1R3), strong convergence of T~,~ to

exp on L 2([R3) follows. D

- One should notice that we have taken the limits in the

following order : first the Von Hove limit /L -~ 0, then the classical limit
~ ~ 0.

In some sense, Theorem 4 shows that one obtains the same result by
taking the limits in the reverse order. But it should be observed that in
this case the classical limit ~ -~ 0 is taken in a somewhat different sense,
e. g. using coherent states, and not directly on extensive observables.

It is natural to inquire about limits along other directions in the ~,, ~
plane; we have so far no definite results on this problem.
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