@article{AIHPA_1983__38_1_69_0,
author = {Pt\'ak, Pavel and Rogalewicz, Vladimir},
title = {Regularly full logics and the uniqueness problem for observables},
journal = {Annales de l'I.H.P. Physique th\'eorique},
pages = {69--74},
year = {1983},
publisher = {Gauthier-Villars},
volume = {38},
number = {1},
mrnumber = {700701},
zbl = {0519.03051},
language = {en},
url = {https://www.numdam.org/item/AIHPA_1983__38_1_69_0/}
}
TY - JOUR AU - Pták, Pavel AU - Rogalewicz, Vladimir TI - Regularly full logics and the uniqueness problem for observables JO - Annales de l'I.H.P. Physique théorique PY - 1983 SP - 69 EP - 74 VL - 38 IS - 1 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPA_1983__38_1_69_0/ LA - en ID - AIHPA_1983__38_1_69_0 ER -
%0 Journal Article %A Pták, Pavel %A Rogalewicz, Vladimir %T Regularly full logics and the uniqueness problem for observables %J Annales de l'I.H.P. Physique théorique %D 1983 %P 69-74 %V 38 %N 1 %I Gauthier-Villars %U https://www.numdam.org/item/AIHPA_1983__38_1_69_0/ %G en %F AIHPA_1983__38_1_69_0
Pták, Pavel; Rogalewicz, Vladimir. Regularly full logics and the uniqueness problem for observables. Annales de l'I.H.P. Physique théorique, Tome 38 (1983) no. 1, pp. 69-74. https://www.numdam.org/item/AIHPA_1983__38_1_69_0/
[1] , , On compatibility in quantum logics, Foundations of Physics, t. 12, no. 2, 1982, p. 207-212. | MR
[2] , Measures on closed subspaces of a Hilbert space, Journal of Mathematics and Mechanics, t. 6, 1965, p. 428-442. | MR
[3] , Orthomodular lattices admitting no states, J. Comb. Theory, t. 10. 1971, p. 119-132. | Zbl | MR
[4] , Uniqueness and existence properties of bounded observables, Pacific Journal Math., t. 19, 1966, p. 81-93, p. 578-589. | Zbl | MR
[5] , Stochastic Methods in Quantum Mechanics, Elsevier North Holland, New York, 1979. | Zbl | MR
[6] , A characterization of state spaces of orthomodular lattices, J. Comb. Theory, t. A17, 1974, p. 317-325. | Zbl | MR
[7] , Geometry of Quantum Theory I, Van Nostrand Reinhold. Princeton, New Jersey , 1968. | Zbl | MR






