@article{AIHPA_1982__36_3_225_0,
author = {Klink, W. H. and Ton-That, T.},
title = {Matrix elements and highest weight {Wigner} coefficients of $GL (n, \, \mathbb {C})$},
journal = {Annales de l'institut Henri Poincar\'e. Section A, Physique Th\'eorique},
pages = {225--237},
year = {1982},
publisher = {Gauthier-Villars},
volume = {36},
number = {3},
mrnumber = {664634},
zbl = {0488.22041},
language = {en},
url = {https://www.numdam.org/item/AIHPA_1982__36_3_225_0/}
}
TY - JOUR
AU - Klink, W. H.
AU - Ton-That, T.
TI - Matrix elements and highest weight Wigner coefficients of $GL (n, \, \mathbb {C})$
JO - Annales de l'institut Henri Poincaré. Section A, Physique Théorique
PY - 1982
SP - 225
EP - 237
VL - 36
IS - 3
PB - Gauthier-Villars
UR - https://www.numdam.org/item/AIHPA_1982__36_3_225_0/
LA - en
ID - AIHPA_1982__36_3_225_0
ER -
%0 Journal Article
%A Klink, W. H.
%A Ton-That, T.
%T Matrix elements and highest weight Wigner coefficients of $GL (n, \, \mathbb {C})$
%J Annales de l'institut Henri Poincaré. Section A, Physique Théorique
%D 1982
%P 225-237
%V 36
%N 3
%I Gauthier-Villars
%U https://www.numdam.org/item/AIHPA_1982__36_3_225_0/
%G en
%F AIHPA_1982__36_3_225_0
Klink, W. H.; Ton-That, T. Matrix elements and highest weight Wigner coefficients of $GL (n, \, \mathbb {C})$. Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Tome 36 (1982) no. 3, pp. 225-237. https://www.numdam.org/item/AIHPA_1982__36_3_225_0/
[1] and , Finite-dimensional irreducible representations of the unitary group and the full linear group and related special functions. Izv. Akad. Nauk. S. S. S. R. Ser. Math., t. 29, 1965, p. 1329-1356; English transl., Amer. Math. Soc. Transl., t. 64, 1967, p 116-146. | Zbl | MR
[2] , Lett. Math. Phys., t. 3, 1979, p. 315. | Zbl | MR
[3] and , Ann. Inst. H. Poincaré, Ser. A, t. 31, 1979. p. 77-79. | Zbl | Numdam
[4] and , C. R. Acad. Sci., Ser. B, t. 289, 1979, p. 115-118.
[5] and , Comm. Math. Phys., t. 8, 1968, p. 89; , J. Math. Phys., t. 20, 1979, p. 2391, and references cited therein. It should be noted in these references the multiplicity free Wigner coefficients are computed inductively. | MR
[6] , Scientia Sinica, t. 15, n° 6, 1966, p. 763-772. | Zbl | MR
[7] and , Ann. Inst. H. Poincaré, Ser. A, t. 31, 1979, p. 99-113. | Zbl | MR | Numdam





