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Slovak Academy of Sciences, 88527 Brastislava, Czechoslovakia

ABSTRACT. — Compatibility relation, commensurability of observables
and existence of joint distributions in quantum logics are considered.
A weakened form of compatibility, so-called partial compatibility of pro-
positions is introduced and its connections with a relativized commensura-
bility of observables and with the existence of joint probability distributions
of Gudder’s type are studied.

1. INTRODUCTION

In the quantum logic approach to quantum theory, the structure of the
set of all yes-no measurements (called also propositions, questions, events),
which is called the logic of a physical system, is of a primary importance.

The logic of a classical system is found to be the Boolean lattice of all
Borel subsets of the phase space of the system, while the logic of a standard
quantum mechanical system is the complete ortholattice of all closed
sub-spaces of a (complex, separable) Hilbert space corresponding to the
system.

For a general physical system its logic L is assumed to be an orthomodular
o-orthoposet, i. e. L is a partially ordered set with 0 and 1 and with the
orthocomplementation L : L — L such that i) V g;e L for any sequence
of pairwise orthogonal elements of L (we say that a, b€ L are orthogonal
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392 S. PULMANNOVA

and write a L b if a < b*) and i) a < b (a, be L) implies b = a V ¢, where
cel, c <at.

If the logic L is given, we can identify the states of the physical system
with probability measures on L and the observables with 6-homomorphisms
from Borel subsets of the real line R' into L. (See e. g. Mackey [/], Vara-
darajan [2] and [3)]).

2. COMPATIBILITY RELATION

Let L be an orthomodular ¢-orthoposet. In the following we shall call L
briefly a logic. A subset K of L is a sublogic of L if i) a e K implies a* € K
and ii) V a;eK for any sequence { g; } of mutually orthogonal elements
of K. A subset K of L is a Boolean subalgebra of L if i) a € K implies a* e K,
iij)foranya,beK,a V beK (a A beK) and iii) for any a, b, ce K,

aNbVe)y=aANbValc @VbAce)=@VbAN@Vec).

K is a Boolean sub-g-algebra of L if it is a Boolean sub-algebra and V 4, K
(A a;e K) for any sequence { g; } of elements of K.

Two elements a, be L are said to be compatible (a < b in symbols)
if there exist three pairwise orthogonal elements a,, by, ¢ in L such that
a=a; V cand b = b, V c. Varadarajan [2] proved the following:

a <> b iff there exist an observable x : B(R!) — L and Borel subsets E,
F of R! such that a = x(E) and b = x(F).

As a direct consequence we obtain:

a < b implies a « b*.

The following statement may help to clarify the significance of the
relation <« [2]:

a < b iff there exists a Boolean subalgebra of L containing both a
and b.

Thus, if a, b € L are compatible, they can be treated as classical proposi-
tions. As the most important feature of quantum mechanical physical
system is considered the existence of propositions that are not compatible.

The following statements were proved by Varadarajan [2] and Mac-
key [/].

(1) If a < b, thatisa=a, V¢, b= b, V ¢, a, by, ceL are mutually
orthogonal, then there exista V banda A band ¢ = a A b.

(2) Let ay, a,, ... are elements of L. If ¢ « g;forall i = 1,2, ..., and
if V a;and V (a A a;) bothexist,thena < V g;anda A (V a)= V aA a;

(3) The logic L is a Boolean ¢-algebra iffa < bforanya, be L.

Guz [4] showed that « is the strongest one in the family of all relations
C < L x L such that

i) C is symmetric and reflexive,
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COMPATIBILITY AND PARTIAL COMPATIBILITY IN QUANTUM LOGICS 393

if) aCb implies aCh*,
iiiy a < b implies aCb,
iv) aCbh, aCc, b L ¢ imply aC(b V o).

If the relation « has the following property ¢) for any triple a, b, ¢ of
mutually compatible elements of L one has a <> b V ¢, we say that < is
regular. The logic L is said to be regular if the relation « in it is regular.
Examples, which have been found by Pool [6] and independently by
Ramsay [7] show that not every logic is regular. If L is a lattice, then pro-
perty (2) implies that it is regular.

Let A be a subset of L, we say that A is compatible if a & b for any
a, be A. The following statement is true: the logic L is regular iff for any
compatible subset A of L there is a Boolean sub-g-algebra of L containing A
(see e. g. Guz [6])

If the logic L is not regular, then a stronger definition of compat1b111ty
is needed for the existence of a Boolean g-algebra containing a compatible
set. Such a condition was found by Guz [5] and, independently, by Neu-
brunn [8]. We shall call it strong compatibility (s-compatibility). Given
a set A = L, the smallest sublogic L, of L containing it always exists.
The set A is said to be strongly compatible if any two elements a, be A

are compatible in L,. (The compatibility of a, b in L, denoted by a S
means that there are mutually orthogonal elements a,, b;, ¢ in L, such that
a=a, Vcand b=>b, V). In [5] and [8] the following theorem is
proved.

TueoREM 2. 1. — If a subset A of L is strongly compatible, then there is
a Boolean sub-g-algebra B such that A= B < L.

Moreover, Neubrunn [8] proved that the sublogic generated by an
s-compatible set A coincides with the generated Boolean sub-g-algebra.

Another strenghthening of compatibility has been introduced by Bra-
bec [9]. To distinguish this notion we shall call it full compatibility ( f-com-
patibility). A finite set { ay, a,, . ..,a, } of elements of L is said to be fully
compatible in L if there exists a finite collection of pairwise orthogonal
elements {¢;:1 < i<k} of L such that for any element a(l < i < n)
there exists a finite subcollection {e;;}; of {e;}; such that a; = V je;;
The collection { e; }; is called an orthogonal covering of the set { a4, .. ., a, } .
A set A = L is said to be f-compatible in L if any finite subset of A is
f-compatible in L.

Using f-compatibility, the following result was proved in [9].

THEOREM 2.2. — If A < L is f-compatible, then there exists a Boolean
sub-g-algebra B such that A= B < L.

Relations among s-compatibility, f-compatibility and pairwise compa-
tibility are discussed in [/0]. It can be easily seen that s-compatibility
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394 S. PULMANNOVA

implies f-compatibility and f-compatibility implies the pairwise compa-
tibility. The logic L is regular iff f-compatibility is equivalent to the
pairwise compatibility.

If {e;}f-; and { f;}}_, are two orthogonal coverings of a finite set
M < L, we say that {e; }f_, is less than { f;};_, if for any e, 1 <i <k,
there is a subcollection { f; }, of { f;}i=, such that ¢, = \/ fis:

If Mc L, we write M* = {a':aeM}. The following statement is
a consequence of the fact that to any f-compatible subset of L there is
a Boolean sub-g-algebra containing it.

LEmMA 2.3. — Let M = {ay,a,, ...,a,} be f-compatible in L. Then
the collection F = {a"* A ... Aa:deD"}, where D = {0, 1},

d=(dy,dy, ...,d)eD", adi={a m 4y

e L), is the minimal cove-
& if d, =0, @SS he Y

ring of the set M u M*.

LEMMA 2.4. — The set F = {a;“ A ... A a,":deD"} is an ortho-
gonal covering of the set M = {ay, ..., a,} iff

\/aldl/\ e /\a,,d"=1‘

deDy,

Proof. — Necessity follows by Lemma 2.3. To prove sufficiency, let

a" AN ... ANaf=1.
deDy,
Let a;e M be fixed. Clearly, a; <> b for any be F. As the elements
{bANaj:beF}
are mutually orthogonal, we get by (2) that

aj=aj/\<\/b)=\/b/\aj.

beF heF
) bifd=1
Y00 d, =0

b=a® A ... Na® A ... A a, From this we have that F is the ortho-
gonal covering of M.

But

‘COROLLARY 2.5. — The set A = L is f-compatible in L iff for any
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COMPATIBILITY AND PARTIAL COMPATIBILITY IN QUANTUM LOGICS 395

finite subset { aj,a,, ..., a,} of A the elements a;* A ... A a,™, deD",

all exist and a" AN ... ANat =1
deD"

It can be easily seen that a subset A of L is contained in a Boolean sub-
o-algebra of L iff it is f-compatible. The minimal Boolean sub-c-algebra
containing A can be found in the following way. For any finite subset
M={ay,...,a,} of Atheset F = {a;% A ... A, :de D"} is ortho-
gonal and its lattice sum equals to one. From this it follows that the set
of all lattice sums over all subsets of F is a Boolean subalgebra of L (see
e. g [7]). Let us denote it by B(M). Now let B’ = U { B(M): M is a finite
subset of A}, then B’ is a Boolean subalgebra of L. Indeed, if a, be B’
then there are M,; and M, such that a e B(M;), be B(M;). But M; UM,
is a finite subset of A and a, be B(M; U M;). From this it follows that
aVb, a ANbeBM, uUM,) cB. Similarly we show the distributivity.
Evidently, B’ is s-compatible, so that by [8] the least sublogic B containing B’
is a Boolean sub-g-algebra of L. Clearly, B is the minimal Boolean sub-
g-algebra of L containing A.

A set of observables { x, }, is said to be commensurable if there is an
observable x and Borel functions f,:R! — R' such that x, = fox.
(By f o x, where f is a Borel function we mean the observable

feox:E - x(f~'(E), E€BR").
THEOREM 2.6. — A set { x, }=, of observables on a logic L is commensu-

rable iff the set R(x,), where R(x,) = { x,(E) : Ee B(R") } is the range
n=1

of the observable x,, is f-compatible in L.

Proof. — The statement follows from the fact that { x, },2; are commen-
surable iff UR(x,,) is contained in a Boolean sub-g-algebra of L (see [3])
* n=1
iff R(x,) is f-compatible.
-

The commensurability of observables enables us to construct joint pro-
bability distributions for observables [3].

CoRrOLLARY 2.7. — Let { x, }, be a set of observables on L. The joint
probability distribution for { x, }, exists iff the setU R(x,) is f-compatible

iff
\/xl(El)"‘ Ao Ax(E)r=1

deDn

for any neN, any x, x5, ..., X,€{ X, }, and any E,E,, ..., E, e BR").
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396 S. PULMANNOVA

Proof. — Let the joint distribution exist. Then for any finite subset
{X1 . %} = {x,}, there is a g-homomorphism 4 :B(R") — L such
that A(E;x ... xE,) = x(E)) A ... A X(E,) [3] From this it follows that

\/x,(El)"1 Ao A X By =1 (2.1)

deDn
is satisfied. It can be easily seen that (2.1) is equivalent to the f-compati-

bility. Indeed, if { a, ..., qa, } is any subset of UR(xa), then any element

a;™ A ... A a,% can be written in the form x,(E))" A ... A xi(Ep)* for
SOMe Xy, ..., X €{ X, Jo» Ey,...,E € B(R') and some de D* The equi-

valence then follows by Corollary 2.5. Now, if UR(X“) is f-compatible,

then R(x;)is f-compatible for any x,, .. ., x, € { X, }o. Hence, x,, .. ., x,
i=1

are commensurable. From this it follows that the joint distribution exists

for them.

3. PARTIAL COMPATIBILITY

DEFINITION 3.1. — Let L be an orthomodular o-orthoposet. A subset A
of L is said to be partially compatible (p. c.) with respect to some a,eL
(ap # 0) if

i) ag <> a for any acA,

ii) the set { ay A a:aeA}is f-compatible in L.

PROPOSITION 3.2. — A set A < L is partially compatible with respect
toagiffay < aforallae Aandtheelementsa, A a,a€ Aare f-compatible
in the logic Ly, = {beL:b<a,}.

Proof. — Let A be p. c. with respect to a, and let { a,, ...,a,} be any
finite subset of A. Let b; = a; A a, 1 <i<n Theset {b,b},1<i<n}
is f-compatible in L and {b;"* A ... A b :deD"} is the minimal
orthogonal covering of it. If d; = 1 for some j, then

by A .. AbSA .. Abt<b < a,
bEA .. ABE=(by Vb,V ...V b) > at,

so that all the elements b, A ... A b, de D" are compatible with a,.
From this it follows that

and

/7ldl /\ /\bnd"/\aoz\/bld‘ /\ao/\ e /\bnd"/\ao
deDn deD"

= (\/bld1 /\ /\ b"dn> /\ ao =a0,

debn
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COMPATIBILITY AND PARTIAL COMPATIBILITY IN QUANTUM LOGICS 397

where .
bi-_—a,'/\ao lfdi'-:

d; —
bi Aa"'{bii/\ao:a,.l/\ao if d,=0.

Since b A ay is the orthocomplement of b, in Ly ), we get by Lemma 2.4
that { by, ..., b, } are f-compatiblein Ly,

On the other hand, if a4 < a; for any acA and ap Nag; 1 <i<n
are f-compatible in Ly, ,,, then there is an orthogonal covering of the
set {ag A a;:1 <i<n}in Ly, which is also an orthogonal covering
in L.

CoroOLLARY 3.4. — A set A c L is partially compatible with respect
toageLiffforany {a,...,a,} = Aalltheelementsa,** A ... A a, A a,,
d e D" exist and

aldl /\ e /\and"/\a():ao.
deD”

THEOREM 3.5. — Let ay,a,, ...,a,€ L be such that all the elements
a"* A ... A af, deD" exist and

a0=\/ald‘/\ o ANaM#0.

deD"

Thenay, ..., a, are p. c. with respect to aq.

Proof. — The elements a,* A ... A a,%, de D", are mutually ortho-
gonal and a,* A ... A g, < a; or a} for any 1 <j < n, so that
a" A .. ANat o a;

for any de D" and 1 < j < n. From this it follows that a; <> a,, 1 < j < n.
Moreover,

ajAa(,:\/al"‘/\.../\a,,""/\aj,
deD"
so that {a," A ... Aag™ Na;:deD", 1 <j<n} is the orthogonal
covering of { a, /\ao,.. a, /\ao}

PropoOsITION 3.6. — If the logic L is regular, then the elements q;, . . ., a,
of L are p. c. with respect to a, iff a, a; are p. c. with respect to a, for any
l<i,j<n

Proof. — Necessity is clear. To prove sufficiency, let a, a; be p. c. with
respect to a, for any 1 < i, j < n. This implies that g; A a, < a; N\ ag
for all i, j in the logic L, ,,. By regularity of the logic Lio,q,) then

a; N ag,...,a, A aq
are f-compatible in Ly, ,,, hence ay, . . ., a, are p. c. with respect to ay.

Vol. XXXIV, n° 4-1981.



398 S. PULMANNOVA

Let A be a subset of L. We set A¢ = {beL:b o A}, where b < A
means that b < a for all ae A.

THEOREM 3. 7. — If a finite subset M of L is p. c. with respect to a,, then M
is also p. c. with respect to .

Proof. — Let M = { ay, a,, ..., a, } and let b e M“. As a, < a,
1 <i<n ayeM so that a, — b. Let {ei ey ..., e} be the minimal
orthogonal covering of the set {a;Nag, ...,a, N a, }.Clearly, e; <> a ;A ay,
1 <j<n and e < ag < (a; A ag)* implies ¢; « a; A\ ag, 1 <j<n for

anylsisk.HenceeiHaj/\aOVaj/\aé,lstn,sothathe,~,
k k

k
L
1<i<k As \/e,- < ag, we have g, = \/e,- \ (\/e,-) A ao. But

i=1 i

=1 i=1
k k
b < ayimpliesb < ag,sothath « \/ei V aj (becauseb > \/C’i,
k i=1 i=1
b < a} and \/eiJ_ aé). Then

=\/(e,./\b)v(\/e,->l/\b/\a°’

i=1 i=1

Sinceb « e, wegete; =b Ae; Vbt Ae,l <i<ksothat

k
1
{{b/\ei,bl/\ei}f=,, b/\ao/\<\/e,»> }

i=

is an orthogonal covering of the set { a; A ao, ...,a, A ag, b A a, }. We
have shown that M U { b } is p. c. with respect to a,. We proceede further
by induction: let MU { by, ...,b,}, by, ..., b,e M® be p. c. with respect
to ag, and let b,,; eM“. As McMuU{b,,....b,} = M implies
MU {by, ...,b, } ) = M* we get by the above part of proof that
MU {by,...,b, b, } is p. c. with respect to a,. From this it follows
that any finite subset { b, ..., b, } of M* is p. c. with respect to aq, i. .
M is p. c. with respect to a,,.

Let A = L be p. c. with respect to a, (ag # 0). By Zorn’s lemma, there is
a maximal set Q p. c. with respect to a, and such that A = QclL.

Annales de I'Institut Henri Poincaré-Section A



COMPATIBILITY AND PARTIAL COMPATIBILITY IN QUANTUM LOGICS 399

THEOREM 3.8. — Let A = L be p. c. with respect to a,. Then the maximal
set Q p. c. with respect to a, and containing A is a sublogic of L.

Proof. — Let a,-e-Q, i=1,2, ... be mutually orthogonal. We show

ks A

that \/aieQ. From a; & ay, i=1,2,..., we have \/ai “— a,

i=1 i=1
%

and (\/a,) A a, = \/(ai A ag). By Proposition 3.2, the set
|V Y

i=1 i=
QAay={aANag:aeQ}is f-compatible in L, ,,. By Brabec [9] the

set Q A gy V {\/(ai A ao)} is f-compatible in L ,,. From

\fora-(\/o) e

i= i=

ps xL

we then get that Q V {\/ a; } is p. c. with respect to ay, i. e. \/a,- eQ

i=1 i=1
by the maximality of Q. Clearly, ae Q implies a' € Q, hence Q is a sub-
logic of L.

REMARK 3.9.—IfLisa lattice, then Q is a lattice, too. Indeed, if a;€ Q,

i=1,2,...,n, the elements \/a and \/ (a; A ap) exist and ay, < q;

n

implies a, < \/a and (\/ ,-) Aag= \/(ai A ag). By [9], then

i=1 n

{ \/a,- A ag }u Q A aq are f-compatible in L, , ;, hence Qu {\/ a; }

i=1 i=1
are p. c. with respect to aq, i. e. a; € Q. In this case the set

i=1
QANay={aNay:aeQ}
is a Boolean sub-o-algebra of Lig 4.
In what follows we shall suppose that the logic L is a lattice. We recall

that the logic L is separable if any subset of mutually orthogonal elements
is at most countable.

Vol. XXXIV, n° 4-1981.



400 S. PULMANNOVA

THEOREM 3.10. — Let M be a subset of a separable lattice logic L. For
any finite set N < M let us set

a(N)=\/a1"' AN a,

deDn
where

N={ay,...,a,},D={0,1},d=(d,,...,d)eD",
5 = a ?fdj=1.
atif d;=0
Then the element g, = /\a(N) exists in L. If a5 # 0, M is p. c. with

respect to a. NeM

Proof. — We show that N; = N, implies a(N,) < a(N,). Indeed, let
N, ={ay,...,a,}, Ny={ay,...,a,0,44,...,a, ). Then for any fixed
dy, ...,d,)e D" we have

a AN ANa™ A ag A LA a
dy v qandy, d d, d d
<a*AN...ANag' A AP N LA a,™

and deDm-n

a(N,) = \/aldl Ao ANa™ ANag AL N gt
deD™

< a™ A L. /\a,,""/\\/a,,ﬂ""“/\ .. A atm

deDVI deDll - m
S\/al"‘ A ... Aaf=alN,).
deDn

Now for any be M, a(N U {b}) < a(N) for any N = M. By Zierler [//]

there is a sequence N,, N,, ... such that a, = /\a(Ni). Then

i=1
b o]

/\(t(Niu{b,')S /\a(Ni): ao

i=1 i=1

On the other hand, a, = /\a(N), so that @y < a(Nu {b}) for any

NeM

finite N = M, hence a, = /\a(Ni u{b})AsaN;u{b}) < b(Theo-
i=1
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COMPATIBILITY AND PARTIAL COMPATIBILITY IN QUANTUM LOGICS 401

rem3.5)foranyi=1,2,...,wegeta, <> b.NowletN={ay, ...,aq,} =M.
Then a, < a; implies a, < a,® A ... A a,% for all de D" Further.

a; N\ a(N) = \/ a;* A ... A a A a. From this it follows that

deD"

ai/\a0=ai/\a(N)/\a0=\/a1‘“/\ o Aa A a A ag,
deDn

hence { a;" A ay, ...,a," A ay :de D"} is the orthogonal covering of the
set {a; A ag, ...,a, N\ ap}. That is, M is p. c. with respect to aj,.

DEerINITION 3.11. — We say that a set A < L is relatively compatible
with respect to a state m if for any finite subset N of A there holds m(a(N))=1.

From m(a(N)) = 1 it follows that a(N) # 0, so that by Theorem 3.5 N
is p. c. with respect to a(N).

The notion of relative compatibility in Hilbert space logics was introdu-
ced by Hardegree [/2]. In [/3] it is shown that the relative compatibility
is closely connected to the existence of joint distributions of type-1, intro-
duced by Gudder [/4]: We say that observables x,, ..., x, on a logic L
have a type-1 joint distribution in a state m if there is a measure u on B(R")
(i. e. the Borel subsets of R") such that for any rectangle set

E; x E; x ... x E,e B(R")
there holds ,
WE; x ... x E)=mx{(E) A ... A x,E)).

It was proved in [/5] that M < L is relatively compatible with respect
to a state m iff the two-valued observables corresponding to the elements
of M have a type 1 joint distribution in the state m.

It can be shown that if L is a separable lattice logic then a subset M of L
is relatively compatible with respect to a state m iff m(ay) = 1, where a,
is the element defined in Theorem 3. 8. Indeed, let M be relatively compatible

r

andlet { N; }; besuch thata, = /\a(Ni). LetussetQ, = N, Q; =UN,~,
i=1 isj

thenQ, =« Q, = ...,aqp = /\a(Qi), a(Q,) = a(Q,) > ..., and the conti-
i=1

nuity from above of m yelds that m(a,) = 1. The converse is straight-

forward.

Let { x, 1€ A } be a set of observables on L. Let us set M = UR(X")’

where R(x,) = { x,(E) : Ee B(R") } is the range of x,. Then for any
{ay,...,a,} =M

Vol. XXXIV, n° 4-1981.



402 S. PULMANNOVA

the elements a,** A ... A a,™, d e D", can be expressed in the form
x(E)" A ... A x(E)%™ for some E,, ..., E e B(R!), some xy, ..., x, and
some (dy, . . .,d,) e D*. By [15] we then obtain the following theorem.

THEOREM 3.12.— Observables { x, }, on a lattice logic L have a type 1 joint

distribution in a state m iff the set M = UR(xa) is relatively compatible
withe respect to m iff ]

m(\/xl(El)“‘ Ao A x,,(E,,)"") =1
deD"”
for any neN, any x;, ..., x,€{x,}, and any E,, ..., E, e BR").
Next theorem shows a connection between relative compatibility and
« relative commensurability » of observables.

THEOREM 3.13. — Let the observables { x, }, on a separable lattice logic L
have a type 1 joint distribution in a state m. Then there are an observable z
and Borel functions f, :R' — R! such that m(x,(E)) = m((f, > z)E)) for
any E € B(R') and any «.

Proof. — The existence of joint distribution implies that the set

M = UR(xa)

is relatively compatible with respect to m. From this it follows that the set M
is p. c. with respect to ao, where a, is defined as in Theorem 3.10. Hence,
the set M A ag = {b A ay:beM} is f-compatible in Ly, Let us set
%(E) = x(E) A ag, E€B(RY), then %,:B(R') - Ly, are compatible
observables on the logic Ly 4, By [3], there exist an observable Z on Lo 44
and Borel functions f, :R' — R! such that ¥, = f, % for any a. Let us
set z(E) = ZE) V w(E) A a$, where w is an observable on L defined by

E) = 1if ceE
"E) =20 if c¢E

for some ce R It can be easily checked that z is an observable on L.
Then for any E € B(RY),

(fxo 2)(B) = 2(f;7 (B) = 2L HE) V w(fi "(E) A ag
= (fooHE) V (fo° wNE) A a5 = Zi(E) V (fuo WNE) A a5 -

As m(ag) = 1, we obtain m((f, - z)(E)) = m(x(E)).
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