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ABSTRACT. — The main object of the study of the present paper is the
pair (L, P) consisting of two nonempty sets: the logic L of experimentally
verifiable propositions (also called questions, events, yes-no measurements)
and the set P of pure states, and satisfying several physically plausible
postulates formulated recently (here, the postulates (A1), (A3) and (PP)).
(L, P), endowed with the axioms mentioned above, was recently shown to
give a proper non-lattice frame replacing the well-known quantum logic
axiomatic scheme. In the present paper we consider in detail two important
concepts, the projection postulate and the superposition principle, both
within the non-lattice framework of the pair (L, P).

The results we obtained here extend and generalize the results obtained
in our earlier papers.

1. BASIC AXIOMS AND NOTATION

We assume, following the quantum logic approach to quantum axioma-
tics, that with every physical system there is associated a pair (L, S) consis-
ting of two sets L and S, whose elements are called propositions (questions,
events, yes-no measurements) and states, respectively, and impose the
following axioms (now commonly accepted), which relate L to S:

(A1) L is an orthomodular o-orthoposet, i. . a g-orthocomplete ortho-
complemented partially ordered set possessing the following property,
called the orthomodularity:

a < b (where a, be L) implies b = a V ¢ for some ceL, c<da’.
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374 W. GUZ

(A2) Sisa o-convex set of probability measures on L.

Remark. — We clearly assume that L # { 0,1 } . By’ we denote the ortho-
complementation of L, and the symbol V (A, respectively) stands for the
least upper bound (the greatest lower bound, respectively) in L.

If a < b' (where a, be L), then we say that a and b are orthogonal and
write a L b. The orthogonality relation is clearly symmetric.

When a L b, then we write a + b instead of a V b, and when a < b, we
write b — a in place of (W' + a) = b A .

Finally, the element ¢ in (Al) is easily seen to be unique, as it is shown
to be ¢ = b — a (see Varadarajan [25]).

The set L satisfying the postulate (A1) above is called the logic of pro-
positions (briefly, the logic). Clearly, the mathematical structure of the logic L
established in axiom (A1) is too modest (or, in other words, the axioms (A1)
and (A2) are too general) in order to get a significant information about the
physical system under study, described by the pair (L, S). So, there usually
is assumed a more rich mathematical structure for L, namely the structure
of an atomistic orthomodular complete lattice with the covering law
holding in it (see, e. g., Varadarajan [26], Piron [22]). However, in view
of the conceptual difficulties connected with the physical explanation and
justification of some of these axioms (like the complete lattice structure of L,
its atomisticity, or the validity of the covering law), the problem arises to
find out a system of axioms for quantum theory free of the troubles men-
tioned above. One of the possible answers to this question has been found
in recent papers of the author (Guz [8], [9], [/2]). We will here follow the
basic idea of these papers, where the main attention has been directed to
the structure of the set P of pure states of the physical system, and assume
the following:

(A3) There exists a subset P = S whose members, called pure states,
are assumed to satisfy the following requirements:

i) For every nonzero proposition a€ L there exists a pure state pe P
such that p(a) = 1.

ii) If for each pure state p € P satisfying p(a) = 1 we always have p(b) = 1,
wherea,be L, thena < b.

iii) For any pure state p € P there is a proposition a € L such that p(a) = 1
and g(a) < 1 for all pure states g # p.

Note that the name « pure state » for a member of the set P, satisfying
the conditions i), ii), iii) above, is fully justified, since it can easily be verified
(Guz [12]) that every p from P is an extreme point of the g-convex set
of probability measures on L spanned by P.

It should also be emphasized at this moment that the assumptions i)-iii)
are by no means new. For instance, i) and iii) were assumed as postulates
by Mac Laren [/6], and ii) by Gudder [4]. Their physical significance is
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PROJECTION POSTULATE IN NON-LATTICE QUANTUM LOGICS 375

clear; for example, the assumption iii) asserts that pure states may be
realized in the « laboratory », because iii) tell us that there is a measuring
device answering the experimental question (described by the proposition
a in iii)) « Is the physical system in the pure state p ? ». The interpretation
of the other assumptions, i) and ii), is obvious.

Note also that the assumption i) can be obtained as a direct consequence
of an obvious physical assumption, the so-called « repeatibility hypothesis »,
which states that the measurement of a proposition repeated immediately
will always give the same result.

Axiom (A3) leads to several important consequences. It has been shown
(Guz [8]) that having assumed (A1) and (A3) we are in a position to prove
that the propositional logic L is atomistic (i. e. L is atomic and each nonzero
ae L 1s the least upper bound of the atoms contained in a) and that there
is a bijection s : P — A(L) of the set P of pure states onto the set A(L)
of all atoms of L such that for every pe P

(1) p(s(p)) = 1;
(2) pla) = 1, where aeL, implies a > s(p).

The atomic proposition s(p) is called the support or carrier of the pure
state p (Zierler [27], Pool [23]), and it is denoted also by supp p or carr p.

Now let my, m, be two arbitrary states from S. We say that m, and m,
are orthogonal (Gudder [4]), and write m; L m,, if there is a proposition
a€L such that m,(a) = m,(a’) = 1. Note that this orthogonality relation
is clearly symmetric.

The pair (P, 1) with L denoting the orthogonality defined above restric-
ted to P, called the phase space of the physical system (see Guz [8]), plays
an important role in quantum axiomatics. Before seeing this, however,
we must introduce some new definitions.

Let M = P. We define

Mt = {peP:plgqforal geM},
M~ = ML,

Obviously, M € M™, and when M = M ™, we call the set M closed. The
family C(P, L) of all the closed subsets of P is called the phase geometry
associated with a physical system (Guz [6]). It can easily be verified (see
Guz [8]) that under the set-theoretical inclusion C(P, 1) becomes an
atomistic complete lattice with the lattice operations given by

\/MJ: (ijM,)_, /J\Mj =OM,-

(where { M; } stands for an arbitrary family of closed subsets of P), and that
C(P, 1)is orthocomplemented by the correspondence M — M* (MeC(P, 1)).
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376 W. GUZ

For the empty set @ we put, by definition, @+ = P, which immediately
leads to 9, Pe C(P, 1).

The importance of the phase geometry C(P, 1) consists in the validity
of the following embedding theorem (Guz [8]):

For each aeL the set a' = { pe P : p(a) = 1} belongs to C(P, 1), and
the correspondence a — a' defines an orthoinjection of the propositional
logic L into the phase geometry C(P, 1).

Let m,;, m, be two arbitrary states again. The number

(my :m,) = inf | my(a) : aeL, mya) =1}

is called the degree of dependance of m; on m, (Guz [7]).

It should be noticed at this moment that the number (m; : m,) has inde-
pendently been introduced several years ago by Mielnik (see [19], [20])
under the name « transition probability between m; and m, », however,
we shall refer to (m, : m,) as to the transition probability only when both m,
and m, are pure states.

It can easily be seen (Guz [/2]) that in our axiomatic scheme described
by axioms (A1) and (A3) the transition probability between any two pure
states p, g€ P is given by

(p:q) = p(s(q).

Moreover, one can easily verify the following properties of the transition
probability:

)0<(p:q <1 forall p, geP.
i) (p:q) =0 if and only if p L g.
iiiy (p:q) =1 if and only if p = gq.

2. COVERING LAW AND PROJECTION POSTULATE

There are several equivalent formulations of the so-called covering law
in lattice quantum logics (see Bugajska and Bugajski [/ ]), among them the
most interesting is perhaps the so-called projection postulate (later on
abbreviated to (PP)), which states the following:

If p(a) # 0, where ae L and pe P, then there exists one and only one
pure state g € P such that g(a) = 1 and p(a) = (p : q).

The significance of the projection postulate (PP) has been clarified in
the papers of Bugajska and Bugajski [/], [2], where were proved several
important consequences of this postulate for the theory of non-lattice
quantum logics (see [2]). In this section we shall show the equivalence of
the projection postulate (PP) with the covering law for the case of a non-
lattice quantum logic L.
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We shall say that the covering law holds in L, or that L possesses the
covering property, L being an atomic o-orthoposet, provided

i) for each ae L and each atom e e A(L) there exists a V e in L;
ii) a V e covers a, when e € a (in other words, a V e = b > a implies
eitherb=aorb=aV e).

Having assumed the property i) for L, where L is an atomic orthomodular
g-orthoposet, we are in a position to prove that the « covering property »
ii) is equivalent to any of several other conditions (see Guz [9]), among
them is the well-known Jauch-Piron’s condition (abbreviated to (JP)):

(JP)Foreachae L andeachee A(L),a V e — ais either an atom or zero.

Remark. — For lattice quantum logics the equivalence between the cove-
ring law and the (JP) condition above has been established by Jauch and
Piron [/5] long time ago, and their proof of this equivalence is easily seen
to hold also for non-lattice quantum logics.

To prove the equivalence of (PP) with the covering law we will follow
the arguments of Bugajska and Bugajski [/], which were applied to the
case, where L was a lattice. First let us note that owing to one—to—one
correspondence s : p — s(p) between pure states and atoms of L, one can
rewrite the projection postulate (PP) in the following equivalent form:

(PP") If p(a) # 0, where ae L and pe P, then there is exactly one
atomic proposition e < a such that p(a) = p(e).

We shall now show that (PP’) is equivalent to the pair of assumptions i)
and (JP), and hence also to the covering law.

We shall begin by proving the implication from (PP’) to i) + (JP). Since
the implication (PP’) = i) is a known fact (see Bugajska and Bugajski [2])
we need only to show the implication (PP’) = (JP).

Let aeL, ee A(L), and let p = s~ !(e). One can assume without loss of
generality that e & a and e < a’. Then clearly p(a) # 0 and p(a’) # 0, so
by applying twice the projection postulate (PP’) we obtain

pa) #0 = Jereawy e, <a and pla) = ple),
pa)#0 = 3,00y e <d and p@)=ple,).
Hence
ple; + e;) = pley) + ple)) =1,
so we have
e=s(p)Se +e;<a+te,,

which leads immediately to

aVe<a-+e,,
so that
aVe—a<(a+e,) —a=e,,
which implies
aVe—a=eeAl).

Vol. XXXIV, n°® 4-1981.



378 w. GUZ

Therefore we have shown that for allae L and e A(L), a V e — a is either
zero (when e < a) or an atom (when e € a), as claimed.

Now we shall prove the converse implication, i. e. the implication from
i) + (JP) to (PP’). So, let us assume that i) and (JP) hold in L, and suppose
that ae L and pe P are such that p(a) # 0. Define e = s(p). Since e £ a’,
we find by applying (JP) that @’ V e — a’ is an atom. We have

pla’ Ve—a)=1-pa)=pla),

which concludes the existence part of (PP).
The rest of the theorem, i. e. the uniqueness part of (PP’), follows simply
by repeating the arguments of Bugajska and Bugajski [/].

3. CONDITIONING OF PURE STATES

Many attempts have been made to justify the covering property in
quantum logics (see, e. g., Pool [23], Jauch and Piron [/5], Bugajska
and Bugajski [/], [2]), but as long as we are within the conventional
quantum logic axiomatic scheme, this property still remains without a
satisfactory empirical justification. We are, however, in a position to give
a physical justification to the covering law, provided we shall go out this
axiomatic framework, and consider the experimental procedures ( « filters » )
corresponding to propositions from the quantum logic. The covering law
can then be obtained as a consequence of physically clear properties of
filters (for details, see Guz [9], [10], [12], [13)).

Moreover, the correspondence between propositions and filtering pro-
cedures associated with these propositions is sufficient and necessary for
the validity of the covering law in a quantum logic. To prove this let us
first consider the pair (L, P) satisfying axioms (A1) and (A3). A mapping
E(E,:p — p,) of the set P of pure states into itself is said to be a generali-
zed (pure) filter associated with the proposition a€ L, provided (compare
Guz [13]):

i) The domain D(E,) of E, consists of those pure states p'e P, for which
pla) > 0, 1. e.
D(E,) = {peP: p(@)>0}.

ii) If pe D(E,), then p(a) = (p : p,) and p,(a) = 1.

Remark. — The number (E,p) (b) is customarily interpreted as the condi-
tional probability that an « event » b e L will occur, provided the « event »
ae L was found to occur for the system being initially in the pure state p.
In other words, E_p describes the final pure state of the system conditioned
by the fact of the occurrence of an « event » ae L for the physical system
being initially in the pure state p, and this is the reason why we often call
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the map E, the conditional probability mapping associated with the (non-
zero) proposition a € L.
It is not difficult to see that every generalized filter E, has the following

property:
Vpgepes  (P1P) = (P:qd). (3.1)

Indeed, since ¢,(a) = 1, we obtain

(p:g,) =inf{p(b):beL, q/b) =1} <pla) =(p:pa),

as desired.

The physical meaning of the inequality (3.1) is obvious: p, is the final
state of the system to which the initial state p goes, after the proposition
aeL has been verified to be true, and this means that the transition pro-
bability (p : g,) has to attain its maximum for g, = p,. Moreover, it is clear
that the inequality (3.1) would be strict, provided p, # q,, and this leads
us to the following definition (compare Guz [/3]):

A generalized filter E, will simply be called filter if the inequality (3.1)
becomes strict, whenever p, # q,.

Suppose at the moment that (L, P), in addition to the axioms (A1) and (A3)
satisfies also (PP) (or, equivalently, the covering law). Then it can be shown
(Guz [12]) that with every non-zero proposition a € L there can be associated
a filter E,, namely the one defined by

E, = 57 15,5, (3.2)

where s stands, as usually, for the support mapping (see Section 1), and s,
is the so-called Sasaki projection restricted to the set A(L) U {0} (s,(e)
=a' Ve — da =an atom or zero; e A(L)u {0}).

Conservely, let us assume that (L, P) satisfies axioms (A1) and (A3) only,
and let { E, } be a family of filters associated with the non-zero propositions
from L. Then:

(1) The covering law holds in L.
(2) {E, } is unique, since { E, } is then induced (via the formula (3.2))
by the Sasaki projections s,,.

Proof. — The validity of the covering law in L, after we assume the pro-
perties mentioned above for (L, P), has recently been shown by Guz [/2].
So, we only need to prove (2).

Suppose that p(a) > 0, where pe Pand aeL,and let p* = s~ }(a’ V s(p) — a'),
that is, s(p”) = a’ V s(p) — a’. In other words, the mapping a — p* is
the usual pure filter defined by (3.2), so its domain coincides with that
of E(E,:p — p,)

We have

(Pa 2 %) = Puls(P)) = pa’ V s(p)) — pdd’) = pda’ V s(p)),
because by ii) we get p,(a’) = 0.

Vol. XXXI1V, n° 4-1981.
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Since p,(a) = 1, we obtain s(p,) < a, and hence s(p,) £ a’.
We shall show that s(p,) < a’ V s(p). By ii) we have
p(a) = (p :pa) = p(s(pa))
but, by orthomodularity,
a= (a - S(pa)) + S(pa)a

so that we find
pla — s(p,) = 0.

Hence
s(p) < (a —s(p))) = a' V s(po), (3.3)
and by applying the covering law we obtain
s(pa) < 'V s(p), (3.4

as claimed. Indeed, it follows from (3.3) that a’ V s(p) < a’ V s(p,);
hence a’ V s(p) = a’ V s(p,), since a’ V s(p,) covers a’.

But the inequality (3.4) leads immediately to pJa’ V s(p)) = 1, so we
have (p, : p¥) = 1, and hence p, = p°.

The equality above proved for all p e P satisfying p(a) > 0, i. e. for all
p € D(E,) = the domain of the map p — p“ shows that E, coincides
with the mapping p — p¢ as claimed.

We thus have shown the equivalence of the covering law (or the projec-
tion postulate) in (L, P), the latter satisfying axioms (A1) and (A3), with the
existence of a (unique) family of pure filters associated with the non-zero
propositions from L. Moreover, the latter consists of the filters E, induced
by the Sasaki projections on L according to the formula (3.2).

4. FILTERS ON A TRANSITION PROBABILITY SPACE:
AN ALTERNATIVE TO QUANTUM LOGIC

To avoid an obvious inconvenience connected with the domain D(E,)
of a (generalized) filter E,, which varies when a is changed, it is useful to
extend the set P of pure states by adding to it some fictitious « pure » state,
called the zero state and denoted by 0, which is defined as the zero function
on L, i. e. 0(a) = O for all ae L. The extended set of pure states will in the
sequel be denoted by Py, thatis Py =P uU {0}.

It is also convenient to extend the transition probability function ( : )
and the mapping E, onto a whole P, by setting for an arbitrary pe P,
©:p=(p:0)=0,

and
Par if p(a)>0

Edp) = {0, if pla) = 0.
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PROJECTION POSTULATE IN NON-LATTICE QUANTUM LOGICS 381

The extended (generalized) filter is here denoted by the same letter E,;
also the previous notation will now be retained, that is we shall write p,
instead of E,p.

Remark. — Note that the extended generalized filter is also defined
when a = 0: then we have, by definition. E,p = 0.

The extended generalized filters possess the following properties (Guz

[11], [12)):

(1) pay=(p:p)=(p:q,) for all pgeP and aelL.

(2) (p:p,) =0 implies p, = 0.

(3) pua) = 1, provided p, # O,
or, equivalently:

pfa’)=0 for all peP,.
As an immediate consequence of the above-—mentioned properties we
obtain:

(4) Every E, is an idempotent, i. e. E2 = E,.

The two concepts defined above, i. e. the extended transition probability
and the extended (generalized) pure filter, leads us immediately to a general
concept of a transition probability space and, similarly, to a general concept
of a (generalized) filter, the latter being defined on an abstract transition
probability space.

We begin with the definition of a transition probability space (Guz [1/],
[12]). A pair (Pg, ( : )) consisting of a (non-empty) set P, together with
a real-valued function ( :):Py x Py — [0,1], the latter called the
transition probability in P, is said to be a transition probability space
(later on abbreviated to t. p. s.) if the following conditions are satisfied:

(1) (p:q) =1 implies p = g.

(2) There exists an element p, € P, such that

l) VpePo (p :pO) = (pO p) = 05

ll) VpePo,p¢po(p p) = 1

The elements of the set P, are called pures states. It can easily be seen,
by using (2), that the element p, defined above is necessarily unique; we
denote it by 0 and call the improper or the zero state. The set P, is therefore
of the form P U {0}, where P consists of those pure states, which are
different from 0; the latter are called the proper pure states.

The concept of the transition probability enables us to define the ortho-
gonality in P, by setting (here p, g are members of P,):

plqg iff (p:q=(q:p)=0.

A transition probability space (P, ( : )) is said to be special if it satisfies
additionally the requirement:

B)(p:9)=0=(q:p) =0

Vol. XXXIV, n° 4-1981.



382 W. GUZ

We are now in a position to give a precise definition of a (generalized)
filter, acting in an arbitrary transition probability space.

A mapping E : P, — P, issaid to be a generalized filter on the transition
probability space (P, ( : )), provided:

i) E is an indempotent mapping,

ii) (p:Ep) =0 implies Ep = 0.

A generalized filter E is simply called a filter if it additionally possesses
the following property:

iii) (p:Ep)=(p:Eq) >0 = Ep = Eq.

Let E, F be two generalized filters on (P, ( : )). We shall say that E is
stronger than F, or that E implies F, and write E < F, if FE = E. We say
that E and F are mutually exclusive or orthogonal, and write E L F, if
EF = FE = 0, where 0 denotes the zero mapping of P, (defined by O(p) = 0
for all pe Py). .

A family & of generalized filters acting on a transition probability space
(P, ( :)) is said to be full, provided:

i) # contains all the mappings E, : P, — P, where p runs over the set P,

defined by g1
12 nmqip,
E =
o {0, ifqLlp.

iiy Every member E of the family & is uniquely determined by its range
R(E) = {Ep:pePy}; that is, if for E, Fe # we have R(E) = R(F), then
E=F.

It can be shown that if a transition probability space (Pg, ( : )) admits
a full family of generalized filters acting on it, then (Pg, ( : )) must neces-
sarily be special.

Indeed, it can easily be seen (by considering two cases: when p £ g and
when p L g) that for all p, g€ Py,

(p:q) = (p:Egp),
so, by using ii) we obtain
(p:g9)=0=Ep=0=plg,
where the last implication is a direct consequence of the definition of E,,
and we therefore have shown that (p : g) = 0 implies (¢ : p) = 0, as claimed.

A family % of (generalized) filters on (P, ( : )) is said to be a logic of
(generalized) filters if it satisfies the following conditions:

@) VeegIrerYperor 10y (P Ep) + (p:Fp) = 1. _
b) For any sequence { E; }72, of pairwise orthogonal (generalized) filters
from & there exists an E € . such that

(p:Ep)=2(p:E.-p)-
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PROJECTION POSTULATE IN NON-LATTICE QUANTUM LOGICS 383

If & is a full logic of filters, then it can readily be seen that the filters F

in @) and E in b) are determined uniquely; we denote them by E" and Z E,
respectively. -
Indeed, let us first note that for an arbitrary generalized filter E we have

R(E)= {pePy:p=Ep}={peP:p=Epju{0},

and by applying this observation we get R(F) = R(F,), provided F, is
another generalized filter satisfying a). Hence F = F, as desired. The proof
of the uniqueness of the filter E in b) is identical.

The physical interpretation of the assumptions a), b) above is standard,
and does not differ from the well-known interpretation given in the frame-
work of the quantum logic approach: E’ is the filter complementary to E,

and ZEi denotes a single filter, which replaces a sequence of mutually

orthoglonal filters E;.

Remark. — Note that if & is a full logic of generalized filters, then the
mappings 0 and I (the zero and the identity map, respectively) belong to &,
because 0 = E, and I = Ej,.

It is not difficult to check that every full logic of filters . possesses all
the properties (F1)-(F7) postulated in our recent paper (Guz [/2]), and
therefore the following theorem holds (Guz [/2]), which states that the
axiomatic scheme based on the pair (L, P) satisfying axioms (A1), (A3)
and (PP) can be translated into the corresponding axiomatic framework
based on the concept of a transition probability space (P, ( : )) and that
of a (pure) filter acting on the former:

Let us suppose that for (L, P) the axioms (A1), (A3) and (PP) (or the cove-
ring law in place of (PP)) hold; then there exists a transition probability
space (Pg, ( : )) such that L is orthoisomorphic to some full logic of filters
acting on (Po, ( : )) and P =P, \ {0}.

Conversely, for an arbitrary full logic % of filters acting on a transition
probability space (P, ( : )) there exist a g-orthoposet L, coinciding actually
with the & itself, and a set P of probability measures on L, whose elements
are in one-to-one correspondence with pure states from P, \ {0}, such
that (L, P) satisfies axioms (A1), (A3) and (PP).

5. SUPERPOSITION PRINCIPLE

There exist several formulations of the superposition principle in the
quantum logic axiomatic framework (cf. Jauch [/4], Gudder [4], Emch
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and Piron [3], Guz [5], [6], Pulmannova [24]). Here we will follow the
formulation of this principle due to Guz [5], [6] (see also Pulmannova [24]),
which is the first formulation based upon the concept of the superposition
of pure states introduced by Varadarajan [26]. The advantage of this
formulation of the superposition principle, besides an extreme clarity
of its physical content, is that it enables us to define the « sectors » analogical
to those defined within the C*-algebraic approach (see Pulmannova [24]).

Let (L, P) be a pair satisfying axioms (A1), (A3). We say that the super-
position principle holds for (L, P) (see Guz [5], [6]) if for any pair p, q of
distinct pure states there is a third pure state r # p, gsuch thatre{p, g }".

Here the « closure » operation ~ is defined as follows (Varadarajan [26]):
For an arbitrary subset M = P we define M~ to be the set of pure states
p € P satisfying p(a) = 1, if the proposition ae L is such that g(a) = 1 for
all g e M; that is

M~ = {peP:pla) = 1, provided g(a) = 1 for all ge M (where aeL)}.

The physical interpretation of the members of the set M~ \ M is obvious.
These are the pure states, which have all the properties possessed by all
the elements of M simultaneously, so it is fully justified to call them the
superpositions of the pure states from M. According to this interpretation,
the superposition principle formulated above states that for any two
distinct pure states p, g there always exists their superposition r in P.

Remark. — It has been shown (Guz [8]) that M~ = M** for an arbi-
traryM c P.

It can easily be seen (Guz [5]; see also Pulmannova [24]) that if the
superposition principle holds for (L, P), where (L, P) satisfies axioms (A1),
(A3) and (PP), then the propositional logic L is necessarily irreducible.

This statement can be reversed:

If (L, P) satisfies axioms (A1), (A3) and (PP), and if L is irreducible, then
the superposition principle holds for (L, P).

Proof. — First let us note that by replacifg pure states by their carriers
we can readily rewrite the superposition principle in the following equi-
valent form (and just this property was named by Emch and Piron [3]
the « superposition principle »): (*) For any pair e, f of distinct atoms
in L there is an atom ge L, different from those, such that g < eV 1.

Now we shall show that the irreducibility of L implies the validity of (*),
and this will be done in the following way: we will suppose that there exist
two distinct atoms e, f such that thereisno anatomg # e, f withg<eV f,
and prove that L is then reducible.

Since e # f, we have e V f — e # 0, so by using the Jauch-Piron pro-
perty (JP) we find that e V f — e is an atom contained in e V f (and
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orthogonal to e), so that, by our hypothesis, e V f — e = f. Therefore
we have f Le.

We shall now prove that for an arbitrary atom g # e, f onehasg L e, f.
Since, by our assumption, g € e¢ + f, we find by applying the Jauch-Piron
property that (e + f) V g — (e + f) is an atom. Denote the latter by h.
Wehave h L e+ fand h < (e + f) V g; hence, by applying the covering
lawwegetg <e+ f + h,whichleadstogVh—h<(e+ f+h —h=e+ f
We shall show that g = h. Suppose the contrary, i. . that g # h. Then
clearly g V h — h # 0, so that g V h — h must be an atom by (JP), but
sinceg V h—h<e+ f,wemusthaveeitherg V h—h=eorgV h—h= f.
Now let us note that g £ &’ (indeed, g < i’ implies g V h — h = g, so we
then have either g = e or g = f, which contradicts our assumption that
g #ef),s0ogV W — hisan atom by (JP), and therefore g V ' — b’ = h.
Hence h < gV I, so we have g < gV h< gV I, and by applying the
covering law we obtain g V h = g V &', which leads to

eVh—h=(gVH AN =W,

so W' is either e or f But ' = e implies h = ¢’ > f, so that h = f, and
similarly i’ = f leads readily to h = e. In both cases we arrive at a contra-
diction (since h L e, f), so the assumption g # h is untentable. Therefore
we have shown that g = h; hence g L e, f, as claimed.

The last step in the proof of our theorem is the observation that e and f
must necessarily belong to the center C(L) of L, where C(L) is by definition
the set of all central elements of L,i.e. C(L) = {aeL :a < bforallbeL},
where < stands for the well known Mackey’s compatibility relation defined
by (see [17], [I8]): a < b if and only if there are three pairwise orthogonal
propositions a,, b,, ¢ such that a = a; + ¢ and b = b; + ¢

Indeed, let a be an arbitrary element of the propositional logic L. We
shall show that a is compatible with e and f. One can assume with no loss
of generality that e £ a. Owing to the atomisticity of L (see Section 1)
we can write a = V e;, where e; are atoms different from e, so we have
a 1 e, since by the result proved earlier we have e; L e for all j. Thus we
have shown that either e < a or ¢ L a, and hence ¢ < a, as claimed.
Similarly we prove that f < g, and this concludes the proofthate, f e C(L);
hence C(L) # { 0,1}, and the theorem is therefore proved.

Remark 1. — Note that the superposition principle can in fact be stated
in the following form:

For any pair p, g of orthogonal pure states there exists a pure state
r#p,gsuchthatre{p,q}".

Equivalently (when we pass on from pure states to their carriers):

For any pair e, f of orthogonal atomic propositions there is a third
atom g # e, f such that g <eV f
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It will clearly be sufficient to prove that if e £ f (e, f € A(L)), then there
always exists an atom g € A(L) different from e and f, such thatg <e V f
and this is in fact a consequence of the orthomodularity and the atomicity
of the logic L. Indeed, if e, f are distinct atoms, then e V f — f # 0 (here
we have used the orthomodularity of L), so by atomicity of L we find an
atom geA(L) such that g<eV f — f Clearly, g # f (since gL f),
and if e £ f, we have also g # e.

Remark 2. — Note that the implication from the superposition principle
to the irreducibility of the logic L can also be proved in a more general
context; namely for the pair (L, P) satisfying axioms (A1) and (A3) only.

Indeed, suppose the contrary, i. e. assume that there is a central element
ae C(L) such that 0 < a < 1, where (L, P) satisfies axioms (A1), (A3) and
the superposition principle. Since L is atomic, there exist two atoms e < a
and f <a'. Let p=s'(e), g=s"'(f), and let re{p, g }~. (Note that
pla) = g(a’) = 1). We shall prove that r must coincide with either p or g.
Note first that for an arbitrary pure state r € P we have either r(a) = 1 or
r(a) = 0, provided a is central, since then we have either s(r) < aor s(r) < a,
but this is precisely the preceding statement. First let us suppose that
Ha) = 1; then r(a’) = 0,so we haver(b) =r(b AN a+ b A a’) = r(b N\ a) for
all be L. We shall show that in this case r = p. Suppose that p(b) =0=p(b A a),
where beL; then also r(b) =r(b A a) =0, since g(b Aa)=0and re{p,q}".
Thus we have shown that re {p}~; hence r = p, because {p}~ = {p}
(see Guz [8]). Similarly we prove that r(a) = O implies r = q. Therefore
we have proved that {p, g}~ = {p, ¢}, which contradicts the assertion
of the superposition principle.

Let us finally note that the irreducibility of L (or, equivalently, the validity
of the superposition principle in (L, P)) is not a restrictive assumption,
because if it does not hold, we can always take into consideration any
irreducible part of L instead of a whole L, as it can be proved that this
irreducible « sector » of L possesses all the essential properties of the
whole (L, P).

We shall demonstrate this for the relatively simple case, where L has
a discrete center. We say that the center C(L) of a logic L is discrete (see,
e. g, Varadarajan [26]) if there is an at most denumerable set { ¢; };y of
pairwise orthogonal elements of C(L) such that

i) \/c,—l

ii) C(L ) consists precisely of all the lattice sums \/ c;, where J is a
subset of I

Jjel
The ¢;’s are called the atoms of C(L).
If L is a logic (i. e. an orthomodular o-orthoposet) with the discrete
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center, then every proposition a€ L can be written as a = a; + a, + ...,
where a; < ¢;, and the q; are uniquely determined, since a; = a A c;.

In other words, we have a decomposition of the whole logic L into
a direct sum of the irreducible logics L; = [0,¢;] = {beL:b < ¢}, the
latter endowed with the partial ordering inherited from L and the ortho-
complementation L defined by b* =b" A ¢; (¢; is clearly the greatest
element in L,).

The result announced above consists of the following:

Let (L, P) be a pair satisfying axioms (A1), (A3) and (PP), and suppose
that L has a discrete center C(L). Let { ¢; } ;. be the family of atoms of C(L),
and let L; and P; be respectively defined by L; = [0, ¢;] and P; = the set
of all probability measures p on L; such that pe P, where p is defined by

pla) =pla A ¢), acL.
Then (L;, P)) satisfies all the axioms (A1), (A3) and (PP).

Proof. — That L; is again an orthomodular g-orthoposet satisfying the
covering law, it is a well known fact. One therefore needs to prove the vali-
dity of (A3) in (L; P;). However, before proving this, we need some ele-
mentary facts about the sets P; and their images P; under the canonical
mapping p — p defined above (by definition, P, = {p:peP;}).

We have:

i) The mapping —, when restricted to a single P,, is one-one, that is
p # q (where p, g € P;) implies p # 7.

ii) P, P; = @, when i # ]

iii) P = UP,..

The property i) is almost obvious, and it needs no proof.

To prove ii), let us suppose the contrary, i. e. assume that there exists
some me P, " P}, so that m = p = g, where peP, qeP; If i #j, then
¢; L ¢j, and we have p(c;) = 1, while g(c;) = 0, so the assumption p = g is
untentable. So we have shown that P, n P; # @ implies i = j, which is
equivalent to ii).

We shall finally prove the property iii), i. e. that each element of P lies
in some P;. Suppose that p e P. Let us observe that p(c;) = 1 for some ie 1,
for if p(c;) < 1 for all j implies p(c;) = O for all j (since ¢; e C(L)), and hence

p(l) = p(\/ ('_i) = 0, so we arrive at a contradiction. Now we shall show
j
that p = p,, where p; stands for the restriction of p to L;. This shows that

p:€ P; and, at the same time, that pe P,.
We have for an arbitrary ae L

pday=pila Nc)=plac)=plaAh c;+aA )= pla),

Vol. XXXIV, n°® 4-1981.



388 W. GUZ

which proves that p = p,, as claimed, and the proof of iii) is therefore
complete.

Now we shall come back to the proof of our theorem and verify the vali-
dity of the postulate (A3) in (L, P,).

To prove the validity of (A3i) in (L, P;), let us suppose that ae L; and
a # 0. Then there exists a pure state pe P such that p(a) = 1. Clearly,
p(c;)) = 1and p(c;) = Oforall j 5 i, so that p = p,, where p; is the restriction
of p to L; (see proof of iii)), and p(a) = p(a) = 1. Since pi € P;, the proof
is complete.

Now we shall show that (A3ii) holds for (L;, P,),i.e. thata' N P, = b' A P,
(where a, be L;) implies a < b.

Indeed, let a' " P; = b' N P, where a, beL,; \ {0}, and let p be an
arbitrary pure state from P satisfying p(a) = 1. We have, as before, p=D;
for some i (where p;e P;) and pfa) = p(a) = 1, so by our assumption we
obtain also p(b) = pi(b) = 1. Therefore we have shown that a' < b!;
hence a < b.

We shall finally prove that (L;, P,) satisfies (A3iii), i. e. that

VpeP,aaeL,- p(a) =1 and vqeh,q#p q(a) <l1.

Note that if pe P;, then p € P, and by (A3) one can find a proposition
aeL such that p(a) = 1 and g(a) < 1 for all g€ P; distinct from p (here
we have used the fact that g # p, where g, pe P, implies § # p). But, by
definition, p(a) = p(a A ¢;),so wehave p(a A ¢;) = 1, wherea A c;e L, and,
at the same time, g(a) = g(a A ¢;) < 1, which concludes the proof of (A3iii).
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