@article{AIHPA_1980__32_4_377_0,
author = {Droz-Vincent, Ph.},
title = {N-body relativistic systems},
journal = {Annales de l'institut Henri Poincar\'e. Section A, Physique Th\'eorique},
pages = {377--389},
year = {1980},
publisher = {Gauthier-Villars},
volume = {32},
number = {4},
mrnumber = {594636},
language = {en},
url = {https://www.numdam.org/item/AIHPA_1980__32_4_377_0/}
}
TY - JOUR AU - Droz-Vincent, Ph. TI - N-body relativistic systems JO - Annales de l'institut Henri Poincaré. Section A, Physique Théorique PY - 1980 SP - 377 EP - 389 VL - 32 IS - 4 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPA_1980__32_4_377_0/ LA - en ID - AIHPA_1980__32_4_377_0 ER -
Droz-Vincent, Ph. N-body relativistic systems. Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Tome 32 (1980) no. 4, pp. 377-389. https://www.numdam.org/item/AIHPA_1980__32_4_377_0/
[1] An exhaustive list of references is by now impossible. See for instance
, J. Math. Phys., t. 8, 1967, p. 201.
, Phys. Rev., t. D 1, n° 8, 1970, p. 2212.
, Ann. Inst. Henri Poincaré, t. 12, 1970, p. 307. | MR | Numdam
, Arch. for Rat. Mech. and Analysis, t. 47, 1972, p. 255. | Zbl | MR
, Phys. Rev., t. D 4, 1971, p. 1689.
, Phys. Rev., t. D 3, 1971, p. 2351.
and , Nucl. Phys., t. B 133, 1978, p. 115.
, Prog. Theor. Phys., t. 54, n° 2, 1975, p. 563.
, , , Nuovo Cimento, t. 48 A, 1978, p. 257; Nuovo Cimento, t. 48 B, 1978, p. 152.
And also references [2-4] and [8].
Quoted below.
[2] , Lett. Nuovo Cim., t. 1, 1969, p. 839; Physica Scripta, t. 2, 1970, p. 129. | Zbl
[3] , Reports on Math. Phys., t. 8, n° 1, 1975, p. 79. | MR
[4] , Ann. Inst. Henri Poincaré, t. 27, 1977, p. 407. | MR | Numdam
[5] and , Phys. Letters, t. 68 B, 1977, p. 239.
, Progr. Theor. Phys., t. 57, 1977, p. 331; t. 58, 1977, p. 1229; D. P. N. U. Report 15-78, 1978.
, Phys. Rev., t. D 18, n° 8, 1978.
[6] and , Ann. Inst. Henri Poincaré, t. 24, 1976, p. 411. See also
, Phys. Rev., t. D 18, n° 12, 1979, p. 4770. In their case, classical field theory automatically provides N-body difference-differential equations, as usual. Then they reduce these equations to a predictive differential system by a series expansion method. In our case one wishes to ignore field theory from the outset.
[7] The spirit of our formulation is similar to that of , Commun. Dublin Inst. Adv. Studies, A, n° 2, 1943. But of course we take into account the facts implied by Currie's No-Go Theorem.
[8] , J. Math. Phys., t. 4, 1963, p. 1470; Phys. Rev., t. 142, 1966, p. 817. | Zbl | MR
, and , Rev. Mod. Phys., t. 35, 1963, p. 350. | MR
, Nuovo Cim., t. 37, 1965, p. 556.
[9] , C. R. Acad. Sc. Paris, t. A 182, 1979.
[10] Trivial for a single particle. For N = 2 see ref. [4] and DROZ-VINCENT, in Volume in the honor of A. Lichnerowicz, Cahen and Flato, Ed. D. Reidel, Dordrecht. The argument holds for any N. It is based upon the « individuality » property expressed in eq. (1.4).
[11] , Lett. Nuovo Cim., t. 23, n° 5, 1978, p. 184. | MR
[12] , Phys. Rev., t. D 19, n° 2, 1979, p. 702. | MR
[13] Note that the sign of the potential depends on the space time signature.
[14] For N = 2, see for example:
, and , Plays. Rev., t. D 3, 1971, p. 2706.
and , Phys. Rev., t. D 15, 1977, p. 335.
and , Phys. Rev., t. D 12, 1975, p. 3583.
, Phys. Rev., t. D 16, 1977, p. 1580. For N = 3, see ref. [5].
[15] Note that abandoning the single-potential assumption will only introduce interaction terms in the « subsidiary » equations (4.6).





