@article{AIHPA_1974__21_3_185_0,
author = {Robinson, Derek W.},
title = {Scattering theory with singular potentials. {I.} {The} two-body problem},
journal = {Annales de l'institut Henri Poincar\'e. Section A, Physique Th\'eorique},
pages = {185--215},
year = {1974},
publisher = {Gauthier-Villars},
volume = {21},
number = {3},
mrnumber = {377304},
language = {en},
url = {https://www.numdam.org/item/AIHPA_1974__21_3_185_0/}
}
TY - JOUR AU - Robinson, Derek W. TI - Scattering theory with singular potentials. I. The two-body problem JO - Annales de l'institut Henri Poincaré. Section A, Physique Théorique PY - 1974 SP - 185 EP - 215 VL - 21 IS - 3 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPA_1974__21_3_185_0/ LA - en ID - AIHPA_1974__21_3_185_0 ER -
%0 Journal Article %A Robinson, Derek W. %T Scattering theory with singular potentials. I. The two-body problem %J Annales de l'institut Henri Poincaré. Section A, Physique Théorique %D 1974 %P 185-215 %V 21 %N 3 %I Gauthier-Villars %U https://www.numdam.org/item/AIHPA_1974__21_3_185_0/ %G en %F AIHPA_1974__21_3_185_0
Robinson, Derek W. Scattering theory with singular potentials. I. The two-body problem. Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Tome 21 (1974) no. 3, pp. 185-215. https://www.numdam.org/item/AIHPA_1974__21_3_185_0/
[1] , Commun. Math. Phys., t. 20, 1971, p. 301-323. | Zbl | MR
[2] , J. Math. Phys., t. 14, 1973, p. 376-379. | Zbl | MR
[3] , Israel Journ. Math., t. 13, n° 1-2, 1972, p. 135-148. | Zbl | MR
[4] , Arch. Rat. Mech. Anal., 1973.
[5] and , Theory of Ordinary Differential Equations. McGraw-Hill, New York, 1955. | Zbl | MR
[6] , Theory for Linear Operators. Springer-Verlag, Berlin, 1966. | MR
[7] and , Methods of Modern Mathematical Physic. Vol. II, Academic Press (to be published).
[8] , Math. Ann., t. 162, 1969, p. 258-279. | Zbl | MR
[9] and , Commun. Math. Phys., t. 2, 1966, p. 147-154. | Zbl | MR
[10] , Quantum Mechanics for Hamiltonians Defined as Quadratic Forms. Princeton University Press, Princeton, 1971. | Zbl | MR
[11] , Commun. Pure Appl. Math., t. 22, 1969, p. 531-538. | Zbl





