@article{AIHPA_1974__21_2_175_0,
author = {Nutku, Yavuz},
title = {Geometry of dynamics in general relativity},
journal = {Annales de l'institut Henri Poincar\'e. Section A, Physique Th\'eorique},
pages = {175--183},
year = {1974},
publisher = {Gauthier-Villars},
volume = {21},
number = {2},
mrnumber = {408724},
zbl = {0295.53033},
language = {en},
url = {https://www.numdam.org/item/AIHPA_1974__21_2_175_0/}
}
TY - JOUR AU - Nutku, Yavuz TI - Geometry of dynamics in general relativity JO - Annales de l'institut Henri Poincaré. Section A, Physique Théorique PY - 1974 SP - 175 EP - 183 VL - 21 IS - 2 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPA_1974__21_2_175_0/ LA - en ID - AIHPA_1974__21_2_175_0 ER -
Nutku, Yavuz. Geometry of dynamics in general relativity. Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Tome 21 (1974) no. 2, pp. 175-183. https://www.numdam.org/item/AIHPA_1974__21_2_175_0/
[1] , Thesis, Göttingen, 1918. J. W. York has kindly informed me that the has also been thinking along these lines. A standard text on this subject is H. RUND, Hamilton-Jacobi Theory in the Calculus of Variations, D. Van Nostrand Co., 1966.
[2] and , Amer. J. Math., t. 86, 1964, p. 109, I am indebted to C. W. MISNER for this reference. | Zbl | MR
[3] , Bull. Amer. Phys. Soc., t. 17, 1972, p. 472.
[4] , Proc. Roy. Soc. (London), t. A 246, 1958, p. 333. | Zbl | MR
[5] , and , in Gravitation, and Introduction to Current Research, edited by L. WITTEN, Wiley, New York, 1962, chap. 7. | MR
[6] , Phys. Rev., t. 160, 1967, p. 5; in Battelle Rencontres, edited by C. M. De Witt and J. A. Wheeler, W. A. Benjamin, Inc., 1968. | MR
[7] Here and in the following the adjective « Riemannian » will always be understood to occur with the prefix « pseudo », denoting that the signature is not necessarily positive definite.
[8] See e. g., , Math. Japonicae, t. 1, 1948, p. 74. | Zbl | MR
[9] With only one parameter the invariance of the action requires that the Lagrangean be homogeneous of degree one in the velocities and the Euler identities follow. Now the 4-dimensional space-time manifold is the range of the parameters and we have the Noether identities. They consist of the necessary and sufficient conditions for defining a globally invariant volume element for Riemannian geometry, Ricci's lemma, contracted Bianchi identities and the identically vanishing Hamiltonian tensor. It is this last identity that plays a fundamental role here.
[10] , Ann. Phys., t. 54, 1917, p. 117; , Rend. Accad. dei Lincei, 1917-1919. The generalization which includes rotation is due to many authors, see e. g., , Thesis, Hamburg; , Ann. Phys., t. 12, 1953, p. 309.
[11] This was first recognized by and , Phys. Rev., t. 154, 1967, p. 1229, but as they first imposed a coordinate condition, their metric analogous to our Equation (3) is not the full metric.
[12] One possible generalization, cf. ref. 2, is to take for the two 2-covariant tensors the metric g and the Ricci tensor R on M, whereupon g, R will be Einstein's Lagrangean, but in this case we cannot introduce a metric such as g'.
[13] , Reports on Math. Phys., t. 1, 1970, p. 29 (Torun). | Zbl
[14] . and , Ann. Inst. Fourier, Grenoble, t. 14, n° 1, 1964, p. 61-70. | Numdam | Zbl | MR | EuDML
[15] , Bull. Acad. Pol., t. 18, 1970, p. 667. | Zbl
[16] and , Ann. Phys., t. 24, 1969, p. 62. I. am indebted to D. Brill for this reference. These authors exploit the isometries of Equation (2) in deriving Equation (3) which shows that Equation (3) is a metric of the type discussed by Trautman in the previous reference. | MR
[17] , Tohuku Math. J., t. 10, 1958, p. 338. | Zbl | MR
[18] , Phys. Rev., t. 101, 1956, p. 1597. | Zbl | MR
[19] and , J. math. Phys., t. 3, 1962, p. 566. | Zbl
[20] , J. Math. Phys., t. 9, 1968, p. 1739. | Zbl






