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ABSTRACT. This paper is concerned with the linear approximation
of the Einstein-Cartan theory, this being considered the approximation
of weak metric field and weak torsion. The linearized field equations are
applied to the simple case of the Weyssenhoff fluid. It is shown that a static
sphere of the Weyssenhoff fluid may serve as a source of the Kerr metric
(in the linear approximation). Finally, junction conditions across the surface
of spin discontinuity are shortly discussed.

1. INTRODUCTION

During the past few years there has been a renoval of interest in the
Einstein-Cartan theory, which is a slight modification of the classical,
Einsteinian theory of gravitation. A complete review of this subject can be
found in the papers by Hehl [5] and by Trautman [8]. In this theory, gravita-
tional field is described by two tensor fields, namely the metric g~~ and
the torsion = 0393ijk(0393ijk are the coefficients of the linear, metric
connection r with respect to a holonomic frame). The Einstein tensor of
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the connection r is proportional to the canonical energy-momentum
tensor of matter similarly as in the classical theory of gravitation,

The torsion tensor of r is determined by the spin tensor of matter 

Taking into account the metric condition imposed on r and equation (2)
one may express the connection coefficients by the Christoffel symbols
and the spin tensor,

If we substitute (3) into equation (1) we obtain the single-written equation

instead of the system of equations (1) and (2). The symbol - denotes objects
related to the Riemannian connection associated with the metric tensor 
A similar formula has been obtained by Hehl [5].

Since, due to equation (4), the torsion was eliminated, one may use this
equation to compare the Einstein-Cartan theory with the classical theory
of gravitation. One sees that metric of space-time depends not only on
energy-momentum distribution but also on spin distribution.

Let us now apply equation (4) to estimate the influence of spin in the
case of the Weyssenhoff fluid [4] [9], its matter tensors being defined by

In these formulae the vector field ui is the velocity vector of the fluid, h‘ is
the vector of its enthalpy density, p is its pressure, while sij is the tensor of
spin density in the matter rest-frame. One can write the vector of enthalpy
density with the help of the Bianchi identities in the form

where e = uiujtij is energy density in the matter rest-frame.
Annales de l’Institut Henri Poincare - Section A
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In the present case equation (4) takes on the form

where S2 := - 2 One sees that the square term in spin appearing in the

above equation contribute to the effective energy density and pressure,

The square term in spin behaves as an effective repulsive force. The repul-

sion can become important if the quantity 20142014 ~ is of the same order as
c

the energy density. Let us assume that the energy density e and the spin
density s are proportional to the concentration of spin alligned

nucleons n : e ~ nmc2 s ^-_° 1 nh (m is the mass of nucleon). In this case,
both the terms appearing in the expression for the effective energy are

equal, when n ~ 2mc 4 ^, 1079 cm - 3. Such great concentration may be
present in collapsing stars or at the early stages of the Universe evolution
only. Due to the square terms in spin there is the possibility to avert the
singularities of the Friedmann type in homogeneous cosmological
models [7].

In those models the linear term in the spin derivatives occuring on the
right-hand side of equation (5) vanishes. It may be essential for sufficiently
large gradient of spin density. We estimate its effect by replacing the deri-
vative of spin density V s by s/R, where R denotes the typical size of inhomo-
genuity. To have this term comparable with the energy term, R must be
of the order 10- 13 cm, if the ratio of the energy density to the spin
density is Thus spin may have an essential influence on the space-
time geometry in the regions of the size of elementary particles.

2. THE LINEAR APPROXIMATION

Let us now study the linear approximation of the Einstein-Cartan theory.
In this theory there are various possible approximations, namely the

Vol. XXI, n° 1 - 1974.
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approximations of: (i) weak metric field, (ii) weak torsion, (iii) weak metric
field and weak torsion. Consider the weak metric field approximation.
In this case exists a coordinate system in which g~~ = 1’/ij + + 0(/~),
where = diag (+ 1, - 1, - 1, - 1) is the Minkowskian metric matrix
and is a small perturbation. In the classical theory of gravitation the
expansion of metric with respect to the parameter 2 is equivalent to its

expansion with respect to the gravitational constant G. In the Einstein-
Cartan theory the situation is slightly different, the expansion with respect
to the gravitational constant corresponds to the simultaneous expansion
of the metric tensor gij and the torsion tensor In turn, (iii) is the approxi-
mation of weak sources.

In the first-order approximation of weak sources equation (4) becomes

We have introduced the notation , t == ~ 2014 - and D = This

equation has the simplest form in a harmonic coordinate system, which
is defined by the de Donder condition = 0 [2], taking on (in
the linear approximation) the form

Let us note that the generalization of the Fock form of the harmonic
condition [3] to the Einstein-Cartan theory reads

By virtue of (7), equation (6) becomes

where

is the symmetric energy-momentum tensor associated by the method of
Belinfante [1] to the canonical one t~. On the other hand, is the linear

approximation of the symmetric energy-momentum tensor deduced from
Hehl’s variational principle [5].
Due to the harmonic condition (7), equation (8) implies the differential

conservation laws for the canonical energy-momentum tensor tij and the
symmetric energy-momentum tensor T~

Annales de l’Institut Henri Poincare - Section A
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for the angular momenta

The divergence of the symmetric energy-momentum tensor obtained
from Trautman’s variational principle [8] is not equal to zero,

3. SPHERE OF WEYSSENHOFF FLUID

Let us consider the linear approximation for the gravitational field of a
static, finite body made of the Weyssenhoff fluid. In the comoving system
of coordinates equation (6) takes the form

(The Greek indices run from 1 to 3). One sees that the spin term and the
energy-momentum term contribute to the different components of the
metric tensor. Since we are interested in spin’s effect on the gravitational
field, we shall consider the third of the above equations only. This equation
may be rewritten in the form

where we have introduced the notation h = h - and 0161 = 1 .

The de Donder condition (7) reduces to

Equations (9) and ( 10) are similar to the equations of magnetostatics.
If lz tends to zero at infinity, the solution of this system of equations is

Voi.XX!,n"l-i974.
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When is much graeter than the size of the body,

where S = is the total spin of the body. Choosing the z-axis in

the direction of S, one may write-down the approximate solution in the
spherical system of coordinates (r, e, ~p) as

where S = I S I. Thus, the metric tensor of a static body constitued of the
Weyssenhoff dust (p = 0) turns out to be a linearization of the Kerr solu-
tion [6],

where M is the mass of the body.
In the particular case of a homogeneous sphere (of the radius R) with a

constant spin density vector s, one can calculate the integral (II) exactly.
In the spherical coordinate system used above the metric tensor is found
to be :

Thus, we have obtained the solution of the linearized Einstein-Cartan

equations describing the gravitational field of a static sphere of Weyssen-
hoff dust, which exterior part is a linearization of the Kerr metric. One

may suppose that in the exact Einstein-Cartan theory it will be possible
to accord the exterior Kerr solution with an interior solution for a body
made of spinning (Weyssenhoff’s) matter. This supposition seems to be
plausible due to the situation in the linearized theory and to the value of
the gyromagnetic ration in the Kerr-Newman solution.

Finally, it is worthwhile to discuss the junction conditions which must
be satisfied at the surface of discontinuity of the spin density. Replacing
the differential equations (9) and ( 10) by the integral equation ( 11 ) we have
avoided this problem so far. Similarly to the Einstein theory we require
that the metric should be continuous. Moreover, we look for the condi-

tions on the first derivatives of the metric. To this purpose let us introduce

r := rot h, which satisfies

Annales de I’Institut Henri Poincare - Section A
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and (due to equation (10))

The vector f is an analogue of the magnetic induction in magnetostatics.
From equations (12) and ( 13) there follows the continuity of n - f and of

n x ( r - across the surface of discontinuity of the spin density,

where n is the unit vector normal to the surface. In our case, the boundary
conditions of the other components of the metric tensor are the same as
in the classical theory of gravitation. It is necessary to underline that not
every derivative of any metric tensor component must be continuous in
contrast to the classical theory of gravitation. The authors are going to
discuss the problem of junction conditions in the exact Einstein-Cartan
theory in more details.
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