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On the significance
of electromagnetic potentials in the Quantum Theory

C. Von WESTENHOLZ

Institut fur Angewandte Mathematik der Universitat Mainz,
Postfach 3980, 65-Mainz (Germany).

Ann. Inst. Henri Poincaré,
Vol. XVIII, 1973, :

Section A :

Physique théorique.

ABSTRACT. - A model for the Aharanow-Bohm effet can be given
as follows. Introduce Aharanow-Bohm fields, which are special Maxwell
fields (as specified in section 3). These fields exhibit the following
properties :

10 They account for the experimentally observable phase change

6.9 = which is produced by the Aharanow-Bohm effect.

20 Despite the missing Lorentz force law, the Aharanow-Bohm effect
can ultimately still be described in terms of some " force law " on a
more abstract level however. This is due to the specifically topolo-
gical character of the Aharanow-Bohm fields.

30 The Aharanow-Bohm fields exhibit a " quantization property " in
virtue of which the Aharanow-Bohm effect is characterized as a quantum
effect.

1. INTRODUCTION

The Aharanow-Bohm effect (hereafter referred to as AB effect) as

described in our section 2, displays two essential quantum mechanical
features. The first is concerned with the question of whether or not
the vector potential A, which satisfies the equation B = curl A
(B : I magnetic flux density) must still be regarded as mathematical
auxiliary when entering into Quantum Mechanics, i. e. as a device in
making calculations, or whether it becomes a real physical field.
This question has been discussed by different authors [1], [2], [3], [7],
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354 C. V. WESTENHOLZ

[8]. The second aspect of the AB effect exhibits that the force concept
gradually fades away in Quantum Mechanics. Instead of forces, one
deals with the way interactions change the wavelengh of the waves.

In fact, AB showed that one of the results of Quantum theory is

that there are physical effects on charged particles in regions in which

the electromagnetic field is nonexistent, but where A is nonzero.

Hence, the key problems related to the AB effect are the following :
1. The problem of localization and action-at-a-distance and

2. The meaning of the force concept in quantum mechanics.
Since the notion of field avoids the idea of action-at-a-distance in

the description of electromagnetic phenomena, it turns out that the

interaction of a charged particle with the electromagnetic field must

be a local one (i. e. the field can operate only where the charge is).
Therefore, in the description of this interaction, only those fields which
are nonzero in the region to which the charged particles are confined

can account for observable physical effects. The AB effect is actually
such that the local formulation is possible only with the aid of the

potentials Ap. (~), since F,,, = 0. This problem of localization

has been discussed extensively by AB [4] and we therefore will not

enter into this question here.
In this paper we are mainly concerned with the problem of investi-

gating the mechanism that, for quantum mechanics, replaces the Lorentz
force law

It turns out that the law that determines the behaviour of quantum
mechanical particles is given in terms of the phase difference

Such a law will exist, even though there are no magnetic forces acting
in the places where the particle beam passes. Otherwise stated,
formula (2) determines the interference pattern of the AB arrangement
(refer to our section 2), i. e. characterizes how the notion in a field-

free region of the charged particles is changed by the electromagnetic
field.

Although it is the physical law (2) that accounts for the AB effect,
it will be shown in this paper that a straight-forward model for the AB
effect ultimately still describes this effect in terms of some « force law »
on a more abstract level, (refer to section 4). That is, it turns out

that, with recourse to a topological framework, the AB-effect may
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355SIGNIFICANCE OF ELECTROMAGNETIC POTENTIALS

be characterized as a « homotopy effect ». The purpose of this article

is, therefore, to provide a consistent topological model for this effect
in terms of some appropriate fields, the AB fields.

2. A DESCRIPTION OF THE AB-EFFECT

The AB effect can be described as follows. Suppose an arrangement
of an impenetrable solenoid behind a wall and between two slits as
shown in the adjacent figure. The situation with and without current

through the solenoid is the following : If there is no current, clearly
B == A = 0 and those electrons emitted from a source, which arrive at
the detector by either path 1 or 2 create the familiar pattern of inten-

, 
+

sity I at the backstop. If the current is turned on, one has B ~ 0
, , 

+ -~
inside the solenoid, however B == 0 and A ~ 0 outside. This corres-

ponds to shifting the entire interference pattern by a constant amount ~.
The wave function, when there is no field in the solenoid, is composed
of two parts 03C801 and 03C802 corresponding to the paths 1 and 2. When the
field is on, the solution to Schrödinger’s equation, in the presence
+

of A, is

/~ -~ ~ -~

Because the integral A dx of A along different paths is different,
1

the interference pattern depends on A, in particular on i. e. the

total flux 03A6 = B Finally, the Hamiltonian which corresponds to
the AB effect is given by
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356 C. V. WESTENHOLZ

Remark 1. - On account of the scalar potential 03C6 a different expe-
rimental arrangement was proposed by AB to demonstrate the effect
of this potential [1]. In our subsequent definition of an AB field we

therefore refer to the 4-potential A == (co, A~, i. e. the field tensor
That is, we define the Maxwell-two-form as

but restrict our later discussion to XO = const. hyperplanes.

3. A TOPOLOGICAL MODEL FOR THE AB EFFECT

A possible mathematical model for the AB effect consists of

(a) A configuration space corresponding to the dynamical Aharanow-
Bohm system.

(b) A topological Aharanow-Bohm field (AB field) on the cotangent
bundle M = T* M to M (differentiable n-manifold).

(c) The canonical structure on T* M (T* 11Z is simply connected).
On account of remark 1 and from physical arguments we introduce

a physical AB field (refer to remark) 2 as a Maxwell field in the

following sense. Let m = A, dx  E F1 {N’), where A, = 9, A and
c1 ~ C1 (N’) [FP (N’) and Cp (N’), p = 0, 1, 2, ..., denote the groups of
closed p-f orms and p-cycles respectively on the dynamical manifold N’,
which is specified below]. Then we can define an AB field as follows :

DEFINITION. - An AB field is given in terms of the pairing (6) and
the conditions (7) and (8) as follows :

(8) ~ - d) (d : F1 - F2 denotes the exterior derivative).

This amounts to confining ourselves to the case of the AB effect

with a vector potential only, that is, where (7) reduces to (9) B = 0

and (10) A ~ 0 in the manifold N’ == R2 - Dr. That is, we consider
the physical space Re with the cylindrical solenoid removed, i. e. the

multiply connected region (R? - D,.) x R where the charged particles
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travel. More precisely : We drop the z-direction (along the axis of
the solenoid) and the space of interest is the plane minus a disk Dr.
Remark 2. - We call (6) the physical AB field. The corresponding

topological AB field on T* M is supposed to be consistent with the requi-
rements (7) and (8) and is related to the physical fields as follows : If

~ : M - R2 - Dr is any smooth function on M = T* M with values
in R2 - Dr then we have :

where

and

and

denote the mappings which are induced by x.
The reason for introducing the AB-field as a pairing of a one form

and a one-cycle is the following :
cl may be written formally as a linear combination cj ==: À1 VI + À2 ~.~

where == : - M, cp E ~° j ; denote Euclidean simplices.
Then, with each ~~, = 1, 2, is associated the wave function (3), more
precisely 

’

Since the integral of A along different paths (1/ is dependent on these
paths these paths obviously do contribute to a description of the AB
effect.

4. PROPERTIES OF THE AB FIELDS

PROPERTY 1. - Let Hi (N’) and Hi (N’) be the first homology and
cohomology groups of N’ respectively. By virtue of the Rham’s first
theorem there exists a nondegenerate bilinear mapping
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which maps the physical AB field (1 03C9, Ci) into the real number

Go 
t 
== T ð. S == S1 - S2 , i. e. the map (14) accounts for the phase

change 1cp = 0394S  which is produced by the AB effect.
jProo/’. 2014 Let 0394S  = 19 E R and suppose to each one-cycle ci is assi-

gned a number per (c,), the period of c¿ :

Then de Rham’s second theorem yields the existence of a closed one
form v~ on N’ which has the assigned periods, i. e.

From physical arguments one infers the law : The phase of the wave
along any trajectory is changed by the presence of a magnetic field

by an amount equal to the integral of the vector potential; therefore :

where

Remark 3. - Obviously, formula (14) does not hold for any Maxwell
field, since, in general, dlb == ~ -:F- 0.
PROPERTY 2. - Gauge transformation of AB fields. - The freedom

of gauge transformations yields the following property of AB fields :
Two AB fields (i. e. their " cohomologous components " 16 and which

differ by the gradient of some zero-form f E F° (N’), are representa-
tives of the same cohomology class, which means :

[refer to the remarks (4) and (5) below].

Proof. - By definition of an AB field (8) one has

(vector space of closed one forms). Therefore the gauge transformation

is a necessary and sufficient condition for the relationship (15) to hold.
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Remark 4. - Within our framework, the AB fields, as defined before,
ensure the gauge invariance of the integral (14). Indeed

(according to Stoke’s Theorem : d f = f = 0 .
Remark 5. - The formula (15) and (17) obviously do not hold for

any Maxwell field, since, in general, I _ ~ F~,,, dxv ~ 0. Therefore,
the relationship (15) is just as good a definition of an AB field.

PROPERTY 3 OF AB FIELDS. - A topological AB field (1i, Cl) (more
precisely : its ~~ cohomologous component 

" I) can be related to the

« action » S : M - R by means of the formula

Proof by quolalion. - Since M is simply connected, it follows that

the Poincare group of M must vanish, i. e. 
’

Formula (20) implies a natural isomorphism to exist :

it follows : ~ is exact. On the other hand, the

physical quantity B = curl A vanishes identically, thus A may be

written as the gradient of some scalar function : A grad o which
is just (19).

Finally, AB fields display the following important.
PROPERTY 4 (« Quantization property »). - A pairing (~, c1~ represents

an AB field if and only if

where

The proof is straightforward (elementary computation).
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Remark 6. - In the connected physical space R2 - ( 0 ) we have :

16 dxk is closed but not exact, i. e.

(w’ is not exact) since M = = dS and d S = x* dS this implies
x* M’ = 0, i. e. but  ~ Ker ~* (Ker x* denotes the kernel
of the map x*).

4. A TOPOLOGICAL FORCE CONCEPT ASSOCIATED
WITH AB FIELDS

In this section we are going to discuss the properties 1 through 4,
of AB fields. The most relevant ones are properties 1 and 3, in parti-
cuclar, property 3 accounts for an abstract force concept. This can
be seen by comparison with mechanics.

Consider a force field w = 03A3 Fi dxi which is required to be conser-
;

vative. Which are the corresponding properties to be imposed upon
the underlying geometry M ? That is, which properties of M imply
M = - d(p ( or equivalently F~ = - 2014~ ? It turns out [5] that the

corresponding topological force field (~, E dF° (M) (vector space
of exact 1-forms), cl E C1 (M), is completely specified if

This amounts to saying that the following is true :

Condition (24) accounts for the fact that all de Rham periods  03C9
of 03C9 vanish, which is just the elementary property that o (x) = -  03C9
be independent of the path joining Xo to x, or equivalently 03C9 = 0
for all closed curves y which are homotopic to zero, i. e. deformable
to a point.

Likewise, the properties 1 and 3 of an AB field display the same
structure as (23). Therefore we conclude that the A.B effect may be
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interpreted as a « homotopy effect » in terms of an AB field (~, Cl) and
by virtue of the relationship

The implication (25) characterizes the AB effect in terms of some
«force mechanism ». That is, if we interpret an AB field as being
derived from geometry in the sense that the properties of the topo-
logy M imply the properties of the field, then this geometry must display
the property (25).
The quantization property 4 of AB fields characterizes the AB effect

as a quantum effect.

This property [formula (22)] settles another controversial feature of
the AB effect. Concerning its interpretation L. Janossy claims in his

paper [8], that the AB effect should not be considered as a quantum-
mechanical effect. This has been refuted by Bohm and Phillipidis [7] 

’

on the grounds of the validity of the formulae

and

fx stands for the velocity field

A straight forward analysis of relationship (27) shows, that the pro-
perties 3 and 4 of AB fields, in particular formula (22), strongly support
the arguments of Bohms and Phillipidis. To begin with, suppose ci)
to be a physical AB field, i. = Ak dxk. The corresponding topo-
logical field (~, CI) then enjoys the properties (19) and (22). Suppose
now the converse to be true, i. e. let be a pairing on T* M,

subject to the conditions (19) and (22) for c~. Then, according to
remark 6, the preimage of (22) is given by

That is, a is (up to a sign) just the one-form (22). Otherwise stated,
on the physical space R2 - 0 }, a is related to the physical AB field
by virtue of (27), (22’) and
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This again emphasizes the quantum mechanical character of the AB
effect. That is, the non-classical relationship (29) (refer to remark 7
below) supplements our description of the AB effect as a quantum
effect.

Remark 7. - Physically, the relationship (29) states that AB fields
do not give rise to a distribution of vortices, which, for classical Maxwell
fields, is given as

5. THE TOPOLOGICAL ASPECT
OF THE QUANTUMTHEORETICAL AB EFFECT

The aim of this section is to provide a «quantization mechanism »
for the eigenvalues E of the Hamiltonian (4) in terms of the quanti-
zation property 4 of AB fields and by working with appropriate topo-
logical conditions. It turns out that the quantized values of E are
those for which the Bohr-Sommerfeld quantum conditions

holds, where

The AB effect may be described as a quantum effect in a suitable
geometric language as follows. Let

be the cotangent bundle over the configuration manifold of the dyna-
mical AB system. The smooth map II, called the projection of the

cotangent bundle, is displayed as

The canonical structure on 1’* M is defined in terms of the one form

which gives rise to the distinguished closed 2-form i2 = dO of maximal
rank, the fundamental form. : ~ T* M be a Ck map, k  1,
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which is defined by rf* (Q) = 0. This yields r}* Q == rf* d0 = d (t* 0) = 0.
A sufficient condition for this relationship to hold is

On the other hand, on account of the electromagnetic potential
c~ = A; there is a diffeomorphism

The transformation (36) induces an automorphism p* of the space
F~~ (T* M) of p-forms (p = 0, 1, ...). Now suppose the «action»

S : M - R and the corresponding 1-form

to be related to the undashed quantities S and dS by means of the
formula

Then the following lemma holds :

LEMMA 1. - The Bohr-Sommerfeld quantum conditions (30) are adia-
baticallrd invariant [9], that is

Moreover, the 1- form (37) is related to the AB field component  by means
of the formula

~’roo f. - Let ~~~, c,~ be a topological AB field of the type (~’), then.
y d S = ~ ;~* d S = ~ dS where c, is a one-chain, S E F" (1VI~ and

~ c.i ~.1

: C, ~M~ --~ C, Furthermore, since c~* is 1-1, ~ve have

therefore
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The « action » S is a solution of the Hamilton-Jacobi differential equation
of particles in an electromagnetic field, i. e.

where

denotes the Hamiltonian Following [6] quantization rules which are

associated with the AB effect may be obtained by imposing topological
conditions on the level surfaces of H by virtue of the following
LEMMA 2. - The quantummechanical constraint manifolds which

correspond to the AB effect are given by

(TE M denote the energy level surfaces at the fixed energy E.)

~’roo f. - By definition

clearly satisfies the inclusion (42).
We now summarize our results as follows

THEOREM. - The AB e f fect may be described in terms o f the following

topological conditions : There exist AB fields (3, 1) which satisfy the

following properties :

4 d S =  2i (d03C8 03C8 - d03C8 03C8) uantization condition).~ ) 2 t j ~, ~q . 
)

q’hese fields describe the AB e f fect as a quantum effect brd virtue o f the

following statements :

(a) There exist functions which corresportd to the quantization
condition (4~ :

, _ -,
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(b) The Bohr-Sommerfeld rules are associated with the constraint manifolds
such that.

such that.

(c) The adiabatic invariance condition 17: d S = dS = n  holds.

Here  and cp* c denole the topological components o f the corresponding
AB fields.

DiscussiON. 2014 Relationship (43) in conjunction with the formula

If;* (9) = dS is equivalent to the Hamilton-Jacobi equation (40), which

in local coordinates, reads H (ql ... qn, dS ... E. The afore-

mentioned two Lemmata account for the characteristic features of

quantum mechanics. Otherwise stated : The constraint manifolds (43)
in combination with the Bohr-Sommerfeld rules (30) (i. e. 39) determine
in the totality of all possible energy level surfaces, those which can
be implemented quantummechanically, i. e. those which correspond to
an AB system. This interrelation between quantum theory and the
method of the Hamiltonian action function S is achieved by expressing
the Bohr Sommerfeld phase integrals (30) through the function S, i. e. in

terms of the quantities dqk.
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