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Théorie
des déformations de structures

par

J. F. POMMARET

ABsTrRACT. — In a former paper [3] we have shown how to modify
some results obtained by M. Janet in 1920 in order to relate them with
the modern formal theory of systems of partial differential equations.

Instead of looking at orthonomic passive systems, we shall consider
only formally integrable involutive systems. This leads us to introduce
the following formally exact complex, called physical sequence !

P@): 0-0>ESFRAR%Z. . %F, 50,

Eand F,(p=0,1, ..., n) are vector bundles over the C* manifold X
with dim X = n.

©® is the solution sheaf of the homogeneous equation @ u = 0.
@4, ..., @, determined by @, are formally integrable involutive first
order partial differential operators.

In accordance with the later result, we have been able to relate the
{runcated sequence obtained when forgetting @ :

PQ): 0-2F2F%. . %F, 0,
with the second Spencer’s sequence :
S,0): 00202, oo
For some physical reasons that justify a posteriori the name given
to P (), the later process seemed to us fundamental when studying
pseudogroups in general.
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286 J. F. POMMARET

However, all the authors, and in particular Spencer, develop technics
in order to describe the first and second Spencer’s sequences that are
related to the equations defining a pseudogroup.

Following a quite different way, we use our physical sequence and
the ideas of E. Vessiot [2] forgotten after 1903. Contrary to Cartan’s
one, the method to be used there will be that of differential invariants.
The definition we give of sfructure generalises that of geometrical object.

We show that, to every sequence :
0->0->T3F,

defining the infinitesimal equations of a pseudogroup I' acting on X
with T (X) = T, we can associate a sequence :

~

0>=Z->T i G,
defining the infinitesimal equations of the pseudogroup T normaliser of T
in Aut (X). ® is also formally integrable involutive (of order g -+ 1).
Let us now forget the initial cell !

)

I"————»E

-
)

T—————G.

where 0, is a first order formally integrable, finite type, partial diffe-
rential operator, and define S, as the solution sheaf of the fransverse

operators Fpi# G,. We get the diagram :

0 0 0 0
0 # ;i’, % ,% b ,}, ER
i
N TR o B o O

We then introduce the idea of deformation, generalising the one
proposed by Spencer that was only related to the cohomology of the
complex P (0) alone.

We generalise the Jacobi’s identities between the structure constants
of a Lie group, getting the bilinear relations :

) J(@) =0,

where the ¢ are some constants characteristic of a given structure.
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THEORIE DES DEFORMATIONS DE STRUCTURES 287

If we consider, as in example I, a Lie group as a particular case of
pseudogroup, we find again the classical deformation theory of Lie
algebra structures.

This leads us to generalise in the following way the theorems that
can be found in the algebraic case.

If H, (P) is the cohomogy at S, of the sequence :
) 0>Y—>8 >3 >8 —....

we get in particular (cf. examples I, II) :

— A sufficient condition of rigidity for a structure is H, () = 0.
— A sufficient condition of formal integrability for every cocycle

One should note the change of grading with respect to that of the
algebraic case. (Hochschild cohomology.)

It is possible to get similar results in the case of intransitive
pseudogroups and subpseudogroups. We get in particular an easy
criterium, when looking only to the infinitesimal equations, in order
to know if £ T is a normal subpseudogroup of T.

As an exercise we invite the reader to show that it is possible to
deform the pseudogroup

y=a +a yP=2+49@)
in the pseudogroup :
x‘l
1 = f(x1), T =
y = f(z") V=@

In fact, the laws of physics are expressed by systems of p. d. e. invariant
under an arbitrary change of coordinates, in a sense that we will make
precise.

For this we extend the preceeding results in order to study the systems

of p. d. e. invariant under a given pseudogroup I' acting on Y, with
arbitrary base space X.

Such a system is called automorphic and can be written :
A) U™ (y, y}) = o7 () (Lie’s form).
This gives rise to the non linear commutative diagram :

x'.:\)(%u
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where, in local coordinates
X3 (@) % (= f@)eXxY,
X3 (@) > (@, » @)eU.

Now it is natural to think that the o (x) must satisfy some compafi-
bility conditions (S) and we may introduce a class of systems of p. d. e.
called structured systems.

Finally we show that the trick of forgetting the initial cell, as
described above, leads to another process called confraction, that gives
all the systems (S) from the knowledge of the bundle il — X.

Example III shows that the set of Einstein gravitational equations
is such a system and gives a new sight on the cosmological constant A.

It is a pleasure to express my deep sense of gratitude to professor
A. Lichnerowicz for this personal interest and to professor D. C. Spencer
for many helpful conversations.

(special relativity) —>=(general relativity>

special general gangrcgh;sed
finite equations finite equations identities \
compatibilit / theory of
oong?hons / / deformation
special general / \ diagrams
infinitesimal ——s infinitesimal .
equations equations \ussocmted
. pseudogroup
A
intransitif pseudogroup
normal subpseudogroup
—> qutomorphic system ———3= structured system
INTRODUCTION

A. Einstein écrivait en 1954, a4 propos de la théorie relativiste du
champ non symétrique :

« Des théories du champ plus compliquées ont souvent été proposées.
Elles peuvent étre classées d’aprés les traits caractéristiques suivants :

(1) Accroissement du nombre de dimensions du continuum. Dans ce
cas, on doit expliquer pourquoi le continuum est apparemment limité
4 quatre dimensions.

(2) Introduction de champs d’un genre différent (par exemple un
champ vectoriel) en plus du champ de déplacement et son champ tensoriel
corrélatif g¢;; ().

(3) Introduction d’equatlons de champ d'un ordre supérieur de
différentiation.
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THEORIE DES DEFORMATIONS DE STRUCTURES 289

A mon avis, de tels systémes plus compliqués et leurs combinaisons,
devraient étre pris en considération seulement s’il existe des raisons
de physique expérimentale de procéder ainsi. »

Cette classification reste encore valable aujourd’hui mais il faut
cependant noter que toutes les théories actuelles reposent sur une utili-
sation commune du calcul tensoriel ou d’autres méthodes classiques de
géométrie différentielle.

Ce faisant, on semble oublier que la forme des équations du champ
de gravitation n’a été donnée par Einstein qu’en 1915, aprés huit années
de tatonnements, au cours desquelles il dut méme faire appel au mathé-
maticien Grossmann pour se familiariser avec le calcul tensoriel.

On peut alors se demander si, au lieu de continuer & puiser dans un
arsenal de moyens connus, une voie toute différente des précédentes
n’existait pas dans la recherche d’un outil mathématique nouveau.

En particulier cet outil devrait généraliser la notion de structure
riemannienne, faire appraitre, indépendamment du contexte tensoriel,
les notions de contraction, de variance, enfin nous permettre de retrouver
naturellement les équations de gravitation linéarisées, sans le secours
d’aucun postulat physique.

C’est cet outil qui sera briévement présenté puis illustré par des
exemples concrets.

La rédaction de cet article a été volontairement simplifiée mais on'
suppose connu [3]. Une exposition rapide de la théorie générale sert de
modele & trois exemples que nous avons traités en détails, pensant en
cela étre utiles au lecteur physicien.

Nous exposons tout d’abord quelques-unes des motivations d’ordre
physique qui nous ont conduit a développer une théorie des déformations
de structures.

Le point de départ est un exemple simple donné par Inonu et Wigner
pour illustrer le principe de la contraction des groupes de Lie et de leurs
représentations (1953).

Il montre comment on peut passer du groupe de Lorentz inhomogéne :
' =zxzch} -+ tshi + a, ' =xshA4+tchi+ a
au groupe de Galilée inhomogéne :
' =x 4+ vt + b, t' =1t b,
Les générateurs du premier groupe sont :

0 0

It:a—t) Ix—(’%) I—t——-l—.’l:

ot
Ils satisfont aux relations de commutation :

[L, I.] =0, [I, L] = 1, [Ie 1] = L.
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290 J. F. POMMARET

Posons

J@=1L J.©0=:L  J(@©=

! L.
c

| -t

Ceci équivaut & changer la base de l'algébre de Lie considéré.
Les nouvelles relations de commutation sont :

D@ J= @I =0, [J(0) - Ol =J=(0)s  [J=(0), - (O] = %Jz (©)-

Lorsque ¢— oo on est amené a chercher un groupe dont les géné-
rateurs satisfont aux relations de commutation :

[er JJ.] = O) [Jt, Jr] = Jx, [Jz: Jr] = 0.
On peut prendre par exemple comme générateurs :

=0 =2 g=tl

L’intérét de ces manipulations réside dans le fait que les algébres
qui peuvent étre contractées dans une algébre donnée par le processus
ci-dessus doivent étre recherchées parmi les algébres obtenues en
déformant la dite algébre, comme cela résulte des travaux de
Gerstenhaber (1964) et d’autres.

Cette déformation sera introduite par lintermédiaire d’une pertur-
bation ¢, (¢, =c¢) de ses constantes de structure, c};, ensemble de
nombres satisfaisant au relations

¢y €k + S ¢ + ¢y cff = 0.

La contraction consiste a observer sur les constantes de structure
I'effet d’un changement de base dépendant d’'un parameétre {, singulier
pour la valeur { = 0.

On sait que ces méthodes ont obtenu un certain succeés en physique
mathématique, mais il semble que I'intérét qui leur est porté diminue
aujourd’hui.

On remarque maintenant que I'idée d’une déformation d’un groupe
de Lie par l'intermédiaire d’une perturbation de ses constantes de
structure peut étre envisagée grace au troisiéme théoréme (réciproque)
de Lie.

Si I'on songe alors qu'un groupe de Lie est un cas particulier de
pseudogroupe, c’est-a-dire de groupe de transformations x — y = f(x)
solutions d’un systéme d’équations aux dérivées partielles, une premiére
idée consiste a4 généraliser les méthodes précédentes et, en particulier
la notion de structure.

Remarque. — L’utilisation des pseudogroupes en physique est souvent
liée a l'étude de la dérivée de Lie d’un temseur » par rapport 4 un
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THEORIE DES DEFORMATIONS DE STRUCTURES 291

champ de vecteurs £. En effet, si

£E)o=0 B
{ LE)w=0 alors £ ([£1, &]) 0 = 0.

et les transformations x— exp (t¥) z telles que £ (£)w = 0 forment
donc un pseudogroupe.

Malheureusement, apres les travaux de pionniers de Lie (1895), Engels,
Medolaghi, seul Vessiot en France essayait d’étudier directement les
équations de définition des transformations finies et infinitésimales d’un
pseudogroupe, tout en conservant la méme optique que ses prédécesseurs.
Aprés un article, publié en 1903 dans les Annales scientifiques de I’ Ecole
Normale Supérieure, ses idées tombeérent dans 1’oubli.

On notera que ce travail, reposant sur une utilisation de la théorie
des sytémes e. d. p., telle qu’elle était développée a ’époque était donc
fort imprécis.

Peu apres, Cartan (1905) obtenait tout une série de résultats fonda-
mentaux grace a l'utilisation de sa théorie des systémes différentiels exté-
rieurs. Ces méthodes étaient généralisées par Guillemin et Sternberg (1966)
dans le cadre de la théorie formelle des systémes e.d.p. développée
par Spencer, Quillen, Goldschmidt. On peut résumer briévement ces
travaux en disant qu’ils explicitent la premiére et la seconde suite de
Spencer (complexes différentiels) grace a lintroduction de formes exté-
rieures généralisant les formes de Maurer-Cartan de la théorie des
groupes de Lie.

Parallélement, Spencer ( a partir de 1957) élaborait une théorie des
déformations des structures analytiques puis des I'-structures (I' = pseu-
dogroupe continu transitif). Par analogie, une variété est dite munie
d’une T'-structure lorsque ses fonctions de transitions sont des trans-
formations d’'un méme pseudogroupe T.

On peut alors formuler les trois remarques suivantes :

(1) Ces techniques de géométrie différentielle semblent présenter un
caractere beaucoup plus général que les techniques algébriques précé-
demment décrites. D’autre part, en relativité générale, le champ de

gravitation étant interprété par une métrique développable en %, on

cherche a décrire les lois phhsiques par des systémes d’équations aux
dérivées partielles dépendant de parameétres. On postule seulement la
nécessité de retrouver les analogues de la physique classique pour ¢ - co.

Il est donc tentant de chercher 4 introduire les techniques précédentes
en physique.

Pourtant on constate que la notion de T -variété, et donc de
I'-structure, n’a pas de signification physique, en ce sens que I'on ne
la rencontre que trés rarement dans des théories physiques. Au contraire,
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la caractéristique de toute description d’un phénoméne physique est, par
abus de langage d’ailleurs, de ne pas dépendre du systéme de coordonnées
employé (exemple : tensorialité, covariance).

(2) Une critique beaucoup plus grave était celle du manque de simpli-
cité; le lecteur physicien qui voudrait étudier ces travaux peut jeter
un coup d’ceil sur I'ouvrage de SPENCER et KumPERA [4], Lie équations,
I (Princeton University Press, 1972) qui représente la version la plus
récente des théories de déformations de I-structures. Il s’apercevra
tout de suite de la difficulté de traiter des exemples, méme simples,
avec de telles méthodes.

(3) Enfin, l'existence d’un lien entre la théorie des déformations de
T-structures et la théorie des déformations de structures d’algebres
de Lie, bien qu’'ayant été pressentie par de nombreux auteurs (Spencer,
Gerstenhaber, Piper, 1967), n’a en fait jamais été trouvée.

Il fallait donc tout d’abord simplifier la théorie formelle des sys-
témes e. d. p., outil fondamental de toute recherche portant sur I'étude
des pseudogroupes en général.

Nous avons été guidés en cela par deux idées maftresses :

(1) La relativité générale, et par la méme toute théorie unitaire,
repose sur l'utilisation d’un certain nombre d’identités. Ce seront par
exemple les identités de divergence provenant des identités de Bianchi.
De plus, on sait que la détermination d’un tenseur quasilinéaire en les
dérivées secondes des g;; tel que..., a été effectuée par Cartan long-
temps aprés que le dit tenseur ait été considéré par Einstein. Enfin,

le développement limité en %, étranger a tout contexte de calcul

tensoriel, permet de n’utiliser que des sytémes e. d. p. linéaires, mais
ceci pour des raisons purement physiques.

Il était donc important de trouver un formalisme ol apparaissent
naturellement les notions de courbure, d’identités de Bianchi, de déve-

1 . A R
loppement en ¢! - cecl dans le cas particulier de la géométrie
riemannienne.

(2) Les seuls travaux anciens dans lesquels des identités étaient
introduites semblaient étre ceux de Janet (1920) sur les systemes e. d. p.
Malheureusement les méthodes rencontrées dépendaient du systeme de
coordonnées. Cependant quelques lignes sur la construction d’une chaine
de systémes e. d. p., en nombre égal 4 celui des variables indépendantes,
chacun d’eux représentant les conditions de compatibilité du précédent,
faisait présager d’un certain lien avec les théories formelles modernes.

Ce lien était exposé dans une « thése de 3¢ cycle » dont le titre était :
Etude interne des systémes d’équations aux dérivées partielles (Institut
Henri Poincaré, février 1972). La partie théorique de cette these était
publiée [3].
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On montre comment il suffit de remplacer la notion de systéme ortho-
nome passif par celle de systéme formellement intégrable et involutif,
tout en conservant les méthodes de Janet, pour obtenir un procédé
«opérationnel », permettant d’aborder tout systéme e.d.p. et ne
dépendant pas du systeme de coordonnées.

Dans le cas de systémes linéaires, la chaine de systémes devient un
complexe différentiel de longueur finie que I'on appelle suite physique
pour des raisons que cet article justifiera a posteriori (1), en accord avec
la premiére des idées maitresses.

Cette suite physique semble donc jouer un réle prépondérant, a
Iexclusion de la premiére et de la seconde suite de Spencer. On montre
méme comment elle peut étre reliée 4 la seconde suite, par oubli de
lopérateur différentiel initial.

Ce processus semblant fondamental comme cet article le précisera,
nous étions persuadés que l'utilisation de cette suite physique apres
oubli de l'opérateur initial, devait jouer un rdle clef dans I’étude des
pseudogroupes.

Et pourtant, aucun des travaux modernes ne la fait apparaitre
directement.

Nous sommes sortis de cette impasse en reprenant ’article de Vessiot
et en le modifiant d’une maniére analogue a celle qui nous avait servi
pour l'article de Janet.

Ceci nous conduisait a4 introduire un objet mathématique nouveau
nommé structure. De méme que dans notre premier travail nous étions
conduit aux termes de suite physique, de méme la notion de structure
généralise en quelque sorte trés largement la notion de structure rieman-
nienne qui en devient ainsi un simple cas particulier comme ces pages
le préciseront. Enfin I'utilisation de la suite physique permet d’intro-
duire un concept de déformation différent de celui de Spencer qui se
raméne a un cas particulier.

On peut d’abord noter la simplicité et ’homogénéité des techniques
employées.

De plus, si 'on cherche ce que devient cette théorie dans le cas
particulier d’un groupe de Lie, on s’apercoit qu’elle redonne exactement
la théorie des déformations de structure d’algebre de Lie.

Les moyens utilisés, tels la considération d’invariants différentiels,
sont donc fort éloignés de ceux de Cartan ou de Spencer. (En fait, pour
Uinstant, nous n’avons pu trouver aucun lien direct avec ces deux théories.)
Par exemple, les n formes de Maurer-Cartan a n variables deviennent n*
fonctions associées 4 n? invariants différentiels, la notation matricielle
n’intervenant que pour des raisons de simplicité.

Nous avons ensuite cherché a généraliser les notions de variance et
de contraction, telles qu’elles apparaissent dans le cadre du calcul
tensoriel.
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Etant donnée une application (réguliére) X L Y, nous montrons qu’a
tout pseudogroupe T' agissant sur Y (2 X) on peut faire correspondre
une structure au-dessus de X, dite structure induife. L’hypothése d’invo-
lution est fondamentale dans la démonstration de ce fait. Nous intro-
duisons pour cela des systémes e. d. p. automorphes, c’est-a-dire
invariants par I'action de I' sur Y, 'espace de base X restant arbitraire.

Nous sommes alors amenés a considérer certains systémes e. d.p.
formellement intégrables et involutifs, liés & la donnée d’une structure
au-dessus de X. De tels systémes sont appelés systémes structurés. Ils sont
caractérisés par la commutativité d’un diagramme plan.

Dans I'exemple III nous montrons que les équations de la gravi-
tation d’Einstein constituent un tel systéme.

En tant que structure mathématique, le tenseur g;; (x) n’intervient

que par les E—(%tlz fonctions qui le représentent localement, la

notation tensorielle n’étant conservée que pour des raisons de simpli-
cité. Le pseudogroupe considéré, que l’on oublie par la suite (Il), est
défini par les équations de Killing. Il se trouve que les linéarisations
introduites naturellement dans le cadre de notre théorie générale sont

justement celles qu’on rencontre en P relativité générale. L’existence

de conditions de compatibilité (intégrabilité formelle) pour les équations
de Killing introduit un espace a courbure riemannienne constante.
(La détermination de la constante caractérisant un tel espace est donc au
fond tout a fait analogue a celle des constantes de structure d’un groupe
de Lie, en ce sens quelles résultent d’'un méme processus mathématique.)
L’espace plat est seul déformable en un espace a courbure non nulle.

Nous justifions le nom de suite physique en faisant apparaitre succes-
sivement dim X, le nombre de g;;, le nombre de composantes du tenseur
de Riemann-Christoffel, le nombre d’identités de Bianchi, etc., ce qui
nous permet de calculer trés rapidement les nombres précédents.

Le fait que les équations d’Einstein constituent un systéme structurée
est important puisque cela nous permet d’interpréter le roéle de la
constante cosmologique A par le biais de la commutativité d’un dia-
gramme plan.

I. — THEORIE DES DEFORMATIONS
Généralités

L’histoire des recherches sur la théorie des pseudogroupes peut étre
résumée par le schéma suivant :
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LIE(183D)
Engel Medolaghi

Cartan——>Cartan Vessiot <«———— Janet

el

AN

illen

Kuranishi ~—-)Em?|r1'er Goldsohmidt
systéme éngralisation invariants émes
dey?:ﬁmes %es équations différentiels s}el.s(;.p.
extérieures de Maurer-Cartan

Le travail de Vessiot [2] a été oublié apres sa publication en 1903.
Au lieu de généraliser les équations de Maurer-Cartan, comme cela
était fait par Cartan grace a la théorie des sytémes de formes diffé-
rentielles extérieures qu’il avait aussi créée, Vessiot utilise les ressources
de la théorie des invariants différentiels. Cependant, parce qu’il faisait
reposer son travail sur la théorie des sytemes e. d.p. qui était trés peu
connue a son époque, de nombreux résultats sont fort imprécis.

1. Equations d’'un pseudogroupe

A. La premiére partie de notre programme a consisté 4 modifier la
théorie de Janet de fagon a l’accorder avec les travaux modernes sur
Iétude formelle des systémes e.d.p. La difficulté majeure était que
cette théorie dépendait du systéme de coordonnées. Nous indiquons dans
une thése de 3¢ cycle récemment publiée [3] qu’il suffit de remplacer
les mots orthonome passif par ceux de formellement intégrable, involutif
pour sortir de ce mauvais pas.

Si E - X (ou F — X) est un fibré vectoriel au-dessus de X, variété C°
avec dim X = n, nous noterons aussi par E (ou F) le faisceau de germes
de sections C* au-dessus de X. Cette convention sera valable pour tous
les fibrés introduits par la suite. En fait, le contexte indiquera toujours
clairement lorsque des différentiations sont en jeu.

T =T (X) sera le fibré tangent au-dessus de X.

oy g @=D0d . .
Soit E 2V F = F, un opérateur différentiel d’ordre q formellement

intégrable et involutif, tel que la suite suivante soit exacte (équations
libres) :

0+ R, > J, (E) 3 F 0.
Suivant Janet, nous construisons la suife physique :
PO): 00 >ESFZF % . %F, >0,
ou les F, sont des fibrés vectoriels définis & un isomorphisme pres.
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0O est le faisceau des germes de sections de E — X, solutions des
équations (X) : @ u = 0.

0® sera appelé faisceau solution de .

@1, ..., @, sont des opérateurs différentiels du premier ordre, formel-
lement intégrables et involutifs.

Comme le suggérait ce résultat, nous avons pu relier la suife fronquée :

P(Q): 0—>Q—>F091F,9§...9$F,,—>0,

obtenue en oubliant @, avec la seconde suite de Spencer :

S,(@): 002 C2C Y Mo,

B. Notre seconde intention était de modifier la théorie de Vessiot en
introduisant I’hypothése d’involution selon les mémes lignes que
ci-dessus.

Soit Y une copie de X; considérons la variété fibrée X XY — X.
Nous utiliserons les coordonnées locales des jets et la notation
multi-indicielle avec |p|=p, +...4 pn. x sera la source et y le
but pour toute application : x -y = f(z). En particulier :

Xaxi (x, x)e XXY.

Suivant en cela Lie [2], nous montrons que les équations finies d’un
pseudogroupe (continu transitif) I' peuvent étre mises sous la forme

) U (y, yf) =" (x)  (forme de Lie),

oll ™ (z) est la valeur de U (y, y§) pour y = .
Les U (y, yi) sont les invariants différentiels d’un certain systéme

complet 3 que l'on construit en cherchant le ¢° prolongement d’un
changement de but infinitésimal. La principale propriété des U (y, yf)
est que, lors d’'un changement de source x>z’ = ¢ (x), ils se trans-
forment entre eux suivant la loi

U@ y)=GU@Y ¥’ 099, [l |v]=gq.

Les transformations finies u’ = G (u, ¢f) sont celles d’'un groupe de
Lie & lorsque I'on considére les ¢f comme des paramétres (pas toujours
essentiels). On montre aisément :

ProposiTION. — @& est transitif si et seulement si T est transitif.
Aux transformations

ug = G (s 0y 9fa), T3 = 9ga (Ta),

ou les gg, sont maintenant les fonctions de transition de X, on peut
associer la fibration U — X.
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Les équations finies (non linéaires) de I' peuvent étre représentées

par la suite non linéaire :
Xay U
N x%

r
Si nous linéarisons les équations précédentes en prenant

y=1+15@) +...
nous obtenons les équations infinitésimales de I' que 'on peut traduire
par la suite linéaire :

0>06->T2F.
Suivant Vessiot, nous montrons que U (y, y}) = » (x) peut étre écrit
sous la forme
GCro@ =@ ou G@@,y=o0Q).
Alors, et cette remarque est trés importante, sil’on appelle L (u) (%

les générateurs infinitésimaux de ®, les équations infinitésimales de T

peuvent étre écrites sous la forme
. ow* (x
) @ =~ LF o @) + 5250 -

2. Conditions de compatibilité

La remarque précédente montre que les coefficients des équations
de (X) sont des fonctions de z par l'intermédiaire des () pour les

Ei (I 1) et des ( ) pour les .

On peut montrer que si la partie algébrique de la condition d’invo-
lution, est remplie par certain w (z), elle le sera par tous. En parti-
culier, si 'on remplace » (z) par o, (z) avec o, () = » (z), si la condition
algébrique d’involution est vérifiée pour f = 0, alors elle sera vraie
pour toute valeur de t (assez petite).

En ce qui concerne I'intégrabilité formelle, il nous faut considérer le
premier prolongement de (X). Nous supposons désormais, pour plus de
simplicité, que I' est transitif. Il nous suffit donc d’examiner seulement les
coefficients des £f (1 =~ | 2| = ¢ + 1) écrits sous la forme d’une matrice :

JA'/M- 5141(1.) -

T (i
) ( ,3“‘) (mn)ck/mFo

O L@

dans laquelle nous poserions u = w ().
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Utilisant maintenant la théorie des sytémes d’équations invariants
par les transformations d’un groupe de Lie, on peut montrer que I'inté-
grabilité formelle de (X) implique certaines conditions de compati-
bilité pour les w (), que 'on écrira :

Premiére espece : I, (u, %) = 0;
du

Seconde espéce : I, <u, %> =c¢ = Cte

et ou il faudrait poser u = o ().

Le nombre total de ces conditions est égal & dim F,. Ce résultat,
indépendant du systéme de coordonnées, est beaucoup plus précis que
celui de Vessiot et résulte de I'introduction de I’hypothése d’involution.

Les ¢ sont des constantes, indépendantes du systéme de coordonnées
par construction, et ainsi définies globalement sur X. Elles consti-
tueront, avec les zéros, la structure du pseudogroupe.

DeriniTION. — Un pseudogroupe sans conditions de seconde espéce
sera dit amorphe.

Si on introduit la dérivée totale dix :

~ d .
L (U, 9 3 43 U@ y8) =0,

d
L (U @ 98), 7z U @ 98)) = .
Si donc on pose

y=zxz+tt@@+...,
on doit alors écrire :

w,(x):w(x)—[—t&ll(x)—l—...,

avec les dim F, conditions :

dQr
o1 ol -
2 o ot T 0w @ =%
dx/ u=w(x)

c’est-a-dire @, Q = 0 lorsque M f = Q.
1 1

Si deux pseudogroupes I' et I'” sont semblables, c’est-a-dire s’il existe
une transformation 2’ = ¢ (z), ¥’ = ¢ (y) telle que I" =9 oIl o o~! on
montre aisément qu’ils ont la méme structure.

Nous avons donc ainsi une premiére généralisation de la structure
d’un groupe de Lie, d’une facon toute différente de celle de Cartan.

De plus on peut montrer simplement que les identités de Jacobi
peuvent étre généralisées en les conditions bilinéaires :

18) J () = 0.
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Pour cela, nous nous servons seulement du fait que, (X) étant un
systéme formellement intégrable et involutif, (Z,) est aussi un systéme
formellement intégrable et involutif.

3. Pseudogroupe normalisateur

Imaginons que nous cherchions des sections U *% X voisines de la

section initiale U ‘_: X. Le probléme de la déformation, que I’on retrou-
vera plus tard, consiste & comparer le pseudogroupe I',, s’il existe, avec
le pseudogroupe T.

Les conditions finies d’existence seront :

s <0~)l @), dw, (x)> 0,

[ 1 (o0 @, 258 —

C,=C—|—tc+...,
1

et si nous écrivons :

nous devrons résoudre :
(JD( Q —_ C.
1 1

Les F, n’¢tant définis qu’a un isomorphisme prés, le probléme majeur
en théorie des déformations sera de particulariser, d’une facon indé-
pendante du systéme de coordonnées, la section de F, - X qui pourra
s’écrire (:z:, (13) dans un systéme de coordonnées particulier.

L’idée clef consiste a résoudre ce probléme en introduisant le pseudo-

groupe I' normalisateur de T dans Aut (X) et certains diagrammes
plans et tridimensionnels.

Utilisant les résultats de notre thése de 3¢ cycle, nous mettrons )
sous sa forme résolue, exprimant les dérivées principales en fonction des z
et des dérivées paraméiriques. Les coefficients sont maintenant 1 pour
les dérivées principales et, pour les dérivées paramétriques, des fonc-

lions des w (x) et dd—i) parmi lesquelles nous prendrons le nombre

maximal de fonctions libres. Ceci nous permettra de déterminer toutes
les sections donnant le méme pseudogroupe T, en résolvant le systeme

non linéaire :
(o 2= r(e 0 52) -0,

On peut montrer que ce systéme est équivalent a un systerne de Pfaff
fermé et que la solution générale en est :

u=g((@,a,
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transformation finie d’un groupe de Lie g qui commute avec toutes les
transformations de & (® et g sont dits réciproques).

P w

e x

=] |

)

Posant
d y
V0. = P(Ca AV @) 1viZgt

on démontre enfin que le systéme non linéaire :
V@ y) =7 (@)

donnent les équations finies, sous forme de Lie, du pseudogroupe r
normalisateur de T' dans Aut (X).
On représentera cette construction par le diagramme :

X.Y U
Ny A
i ,x.y%/ \\&v

>

qui deviendra, en posant
v, (Z) =w(x)+t$12(x)+...,
m(x):n(x)—|—tf1[(x) +...

et linéarisant :

9

0 (f T%;La:; F'e
/ INITIALE l °

0 w T // 5 // G,

Le fait que (2) soit formellement intégrable et involutif peut étre
exprimé au moyen de sa forme résolue et détermine ainsi certaines
conditions de compatibilité pour les 7= (¥) qui ne jouent donc qu’un

role d’intermédiaires. Prenant 7r(x)=P<u, g%> ceci se traduira par
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des relations sur les u, parmi lesquelles :

Jdu d Jdu
L ("’ zc) =0 T (‘* (”’ a—x» =0
d du
& <I** <“’ %)) =0

systéme dont (I) est une conséquence directe.

DIAGRAMME TRONQUE :

o 0
0 O
o 0 0
5
o /R‘&&, RT{'i
0 R e R /
3, Nqet P4 i
S E
}‘\*’- J:‘M(T) 4 JY‘(T)
pd /
JalT) Jull)
Lr

<
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4. Diagrammes

Utilisant la propriété trouvée pour 6,, on peut montrer au moyen

du diagramme tridimensionnel ci-joint que @ est un opérateur diffé-
rentiel d’ordre ¢ 4 1, formellement intégrable et involutif.

On remarquera cependant que l'application
3
Jq+1 (T) - G

n’est pas toujours surjective.
On complétera la cellule initiale par le diagramme :

0 o} 0

| | |
A T ) M

o b o by |
No ,T/////° -, Fy l& -
N /W S

e . . ) 0
ou §, est le faisceau solution de chaque opérateur transverse F,-5G,.

Comme notre thése de 3¢ cycle le suggérait déja, 'idée clef consis-
tera a oublier la cellule initiale pour obtenir le diagramme commutatif :

[ o (8] (0]
| !

0 %ﬂ :Jl’ % 3% EX ?jfi %

o }L i 2 % 9 LL 9 .
l le le. X leg X

0 b Gy -, G D G, O, .

Y est lié aux transformations de ¢ qui ne changent pas la structure
de T.

S, est lié aux paramétres infinitésimaux de g.

S, est lie aux constantes C.

1
Ceci est pratiquement tout ce dont nous avons besoin pour exposer
maintenant notre théorie des déformations.

5. Théorie des déformations

A. GENERALITES. (Pour ce qui suit, se reporter aux exemples I et II.)

Nous avons vu que & (z) = ¢ (» (%), @) donnait le méme pseudo-
groupe I' que o (x).
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DEFINITION. — Si nous prenons » (x) au lieu de w (x) pour décrire T,
nous dirons que nous avons changé la marque de T.

Ainsi un méme pseudogroupe peut étre obtenu sous différentes marques
et chaque marque détermine une structure particuliére.

Nous allons maintenant définir le fype d’un pseudogroupe.

AnaLoGIE. — Lorsque I’on choisit une voiture, on s’intéresse en général
seulement a son type.

Ceci sera vrai pour nous aussi. Nous nous intéresserons aux pseudo-
groupes en regroupant sous le méme type tous les pseudogroupes
semblables & un pseudogroupe donné.

w
DEriNiTION. — Une structure au-dessus de X sera une section U =3

satisfaisant aux conditions de compaltibilité déja formulées.

Remarque. — Si I'on se donne un systéme e. d. p. dont les solutions
sont les transformations d’un pseudogroupe I agissant sur X, nous
avons montré comment construire U — X.

Réciproquement, & toute section U f‘; X satisfaisant & des conditions
de compatibilité appropriées, on peut associer un systéme e. d.p. tel
que le précédent. Ces systémes peuvent décrire des pseudogroupes
identiques, semblables, différents qui seront dits générauz.

Une structure ainsi définie et une I'-structure sont donc trés diffé-
rentes, mais elles proviennent toutes deux d’'un méme pseudogroupe
continu (transitif) I' dit spécial (cf. exemples).

Si nous fixons la marque, tous les pseudogroupes d’'un méme type
auront la méme structure. Cette situation sera schématisée par le dessin
ci-dessous :

structure T

2

T
w (]

structure c¢

0 . . (1)‘ . .
Imaginons maintenant une section U >, X, C* en t, voisine de la
w

section initiale U >3 X et telle que w, (¥) = w (z). Pour obtenir un
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pseudogroupe I'; on doit vérifier :

L (o @ 22) o,

Lo (o0 @, 29—,
avec

L (0@ 22 -0,

I1 est cependant difficile d’étudier directement ces conditions finies
sauf dans des cas particuliers.

Nous étudierons donc les conditions au premier ordre :
@, Q (z) = C.
1 1
Pour ce faire, définissons

B, () =im®, (S,—),  Z, (X) = ker @,41NS,

H, (¥) = ]Z3/; g)

La condition précédente devient

@, QeZ, (Y).
1

~—"

Remarque. — La définition de Z, (Y') est celle du faisceau solution
du systéme e.d. p. :
@2
= F,,

- Gy

1

0> Z, (Y)»F,{

La partie 4 nous permet de montrer que ce systéme du premier ordre
est formellement intégrable et involutif, de méme que celui qui définit Y.
En coordonnées locales, la condition CeZ, (Y') est équivalente aux

1

conditions iinéaires :

La condition pour qu'un élément de $, appartienne & Y peut
s’exprimer par des relations linéaires entre les parameétres infinitésimaux
d’une transformation infinitésimale de g exprimée sur la base formée
par ses générateurs.

Maintenant, la condition EZeB1 (X) détermine les (1] comme combi-

naisons linéaires de ces mémes parameétres.
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On peut donc dire que la condition ®, Q€Z, (Y) représente une
1

condition algébrique greffée sur une condition de résolution provenant
de ;.

Considérons maintenant deux cas particuliers :

10 Déformations a la Spencer : La condition @, & = 0 est nécessaire
1

pour résoudre @f = £. Mais nous avons montré qu'un tel systéme doit
1

étre résolu pour savoir si deux pseudogroupes de méme structure sont
semblables.

Enfin nous savons que pour résoudre le probléme d’équivalence
locale il faut étudier I'exactitude en F, de P (®) ou, celle de S, (®) en
C' ([4], [5D). :

20 T' est un groupe de Lie (cf. exemple I) : La condition algébrique
devient celle que I'on obtient en linéarisant les identités de Jacobi,
alors que la condition d’exactitude est exprimée par le troisiéme
théoréme (réciproque) de Lie.

On retrouve la théorie des déformations d’algébres de Lie.

Nous allons maintenant montrer que les conditions de rigidité et les
obstructions & la déformation peuvent s’exprimer d’une fagon analogue
a celle du cas algébrique. Les méthodes sont cependant trés différentes,
bien que les résultats soient les mémes.

B. CONDITION DE RIGIDITE

DeriNtTION. — Une structure sera dite rigide si elle ne peut étre déformée
en une quires fructure d’un fype différent.

Remarque. — Comme on I'a vu, il revient au méme de parler de
pseudo-groupe.

TutorkME. — Une condition suffisanle de rigidité est
C.S.: H,(¥)=0.
On notera le changement de graduation par rapport au cas algébrique.

C. OBSTRUCTIONS A LA DEFORMATION

Nous utiliserons D’artifice suivant :

Considérons la suite physique P (®,) avec ¢ suffisamment petit.
Alors dim F, (f) = dim F,, et différentiant

@pra () @, () =0,

ANNALES DE L’INSTITUT HENRI POINCARE



306 J. F. POMMARET
on obtient

J J
(a@p_H (t)) L:oo @y + BDpiy o<m6‘)p (l)> = 0.

t=0

Prenons { 4+ ¢ au lieu de f et écrivons :

wl+r=wt+7(€2+t§}+---> ct+r=ct+f((1:+t9+--->-

Si w; est une déformation en f de w, ... sera une déformation en 7
de [OTHS

DEFiNITION. — Un cocycle CeZ! (X) sera dit (formellement) inté-

> 1
grable s’il existe une déformation (formelle) c, de c, telle que g‘% = C.
=0 1

En coordonnées locales on a

0)1(1)(512+t522+...>=(j]+t(;,+...,
mz(’)(9+t9+"-> =O’

mais

@, L =C

1 1

@, C =0.
1

Ainsi :

Q4 C,

=0 1 2

®Q=— (gt@' (t)>

9
B.(N)5®,C = — <5th (t)> Logezz ).

Observant les termes en ¢’ (v > 1), on obtient :

TuéorEME. — Si H, (') = 0, alors tout cocycle €Z, (X) est formel-
lement intégrable.
On notera le méme changement de graduation que précédemment.

Exemple : un pseudogroupe simple (au sens de Lie) est rigide.
6. Pseudogroupes intransitifs, sous-pseudogroupes

Apres avoir lu les pages précédentes, le lecteur averti pourra faci-
lement iraiter ces sujets en effectuant la recherche des équations finies
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et infinitésimales et des structures correspondantes, dans les cas

suivants :
434: ,g(,“t)
= el ge)

A

NORMAL

50US PSEUDOLROVPE

,3L= at

. .
IDENTITE

II. — SYSTEMES STRUCTURES

(Pour tout ce qui suit on se reportera aux exemples II et IIL)

Nous allons tout d’abord généraliser certaines des constructions
précédentes, en particulier la méthode diagonale [3].

Pour cela nous construirons de fagon explicite le fibré vectoriel :

F, > X.
Dans le diagramme commutatif
Xy ——U
Wi
nous avions :
X3 XxY,
z— (z, ),
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conformément au dessin :

>/ A

X

On rappelle alors la construction classique des fibrés normauz, en
définissant N (w) ~ Fy = F, (X) par le diagramme commutatif :

/T(u)
0 T (x){T(u)y 1 N 0
"
X X% X

On a de méme le diagramme commutatif :
T{)

0T () AT N(8)——0
¥

)
— Xy )L

et, pour les différents fibrés introduits, en coordonnées locales :

Fibré Base Fibre
I®) z @) o
A* T (X xY) (@, ¥)ed E(x)gi-i-"(x)d%
T (XxY) @, y) E(x, 9),;%4"”(‘”’ -")o_dg'

L’injection T (X) - A* T (XX Y) devient

x— (z, T) €A,

£@ gt @+ 5 )

I'autre injection A* T (XXY)—> T (XxY) est triviale. Le triangle
supérieur du diagramme précédent est donc commutatif. De plus on
remarquera N (A) ~ T (X) [exactement J, (T (X))].
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Ce qui préceéde est donc implicite lorsqu'on parle de linéarisation.
En particulier, lorsque 'on cherche & déterminer les invariants diffé-
rentiels, on remplace les variables (z, £) par (y, n). Les x jouent alors
un simple rdle de paramétres. La détermination du groupe de Lie &
revient donc & examiner comment se transforment entre eux ces inva-
riants différentiels, lors d’un changement de paramétrage. La seule

e e d 07
propriété utilisée est [E (x) pral 7)) pr ] = 0.
Il revient au méme de supposer que l'on se donne X (Y) au-dessus
de Y, c’est-d-dire que ’on reléve la structure considérée, au-dessus de Y.

I1 suffit pour cela de changer légérement les notations de la premiére
partie, en introduisant la suite non linéaire :

A T sy U(Y)

N L

4 partir de laquelle on construit la suite physique :
2,(Y) 2.0 9.Y)

POX): 00 Y)>T)—F (Y)— F: (Y)

Les coordonnées de T (Y) étant (y, n), on peut utiliser encore les
méthodes de la premiére partie, en imaginant désormais

dimX=nm=dimY.

@(1)

En particulier on peut étudier les prolongements jusqu’a 'ordre ¢ de
P 7} J ) d
la transformation infinitésimale 05,% +n (y)@ lorsque # (y)d—y est une

transformation infinitésimale de I (Y). Un systéme libre maximal
d’invariants différentiels, s’il existe, sera par exemple U (y, yk

Considérons maintenant une application (réguliére) z — y = f (x) que
I'on étendra a l'application :

XL XxY
z — (x, f (2))

et qui permettra de déterminer la valeur des invariants différentiels
pour ¥ = f(x). On s’intéressera au systéme e. d. p. :

») U@ gi) = o @.

DEFINITION. — On appelle systéme automorphe vis-a-vis de I' (Y),
un systéme e. d. p. tel que si y = f(x) est une solution, alors y = ¢ (f (x))
est aussi solution, lorsque y—>y' = { (y) est une transformation d’un
pseudogroupe T (Y).
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Il est facile de voir que le systéme (A) est automorphe vis-a-vis de T (Y)
dont les équations finies & (Y) sous forme de Lie sont Uy (y’, U = oy ().
Nous allons montrer que ce systéme (A) est aussi formellement intégrable
et involutif, lorsque les w (x) vérifient certaines conditions de compa-
tibilité (S).

A cet effet, rebaptisons les variables indépendantes gy, ..., ymn,
ymrr, ymoen Yt L.,y 2, L., 20 dans les équations finies & (Y).
D’aprés leur construction, les U (y’ y;*) peuvent étre considérés comme
des invariants différentiels de I (Y), ne contenant que des dérivés de
classe > (m — n). Les variables non multiplicatrices sont alors & choisir
parmi les z!, ..., 2. Ce sous-systéme est donc involutif & son tour,
d’apres la propriété source de l'involution. Il sera formellement inté-
grable si les  (z) vérifient les conditions de compatibilité relatives
aux oy (f (z)) particuliers auxquels ils sont égaux dans ce systéme de
coordonnées. L’hypothése d’involution garantit ensuite cette propriété
dans n’importe quel systéme de coordonnées. On remarquera, en consé-
quence, que U (y, yi) dépend de y par I'intermédiaire des wy (y).

Puisque [2 @) % » 1 (Y) Jd!-] ] = 0les U (y, yi) se transforment entre eux

sous leffet d’une transformation x> 2’ = ¢ (z), ce qui permet de
construire, comme dans la premi¢re partie U — X & partir du groupe
de Lie &. De cette facon, le systéme (S) est invariant par le premier
prolongement des transformations infinitésimales :

0 Jd
L (X) = & @) 5 + 5 L3 @) 5o
Plus généralement les transformations :

U (uy, fi) = ux

permettent ensuite, par linéarisation, de construire ’application intra-
variante

F, (V) 2 F, (X).

Par un changement de coordonnées locales convenable on se
placera dans la situation ou I’application x— y = f(x) est telle que
yr =0, ...,y =0,y =ga, ..., y* = z" et on utiliseralefait que

ol yk dyk ol '/ +
ozt ... oxvr — Jx'7 dat ... ozt T

pour étudier la partie d’ordre q de (A).

Dans & (Y) ou X (Y) I'hypothése d’involution permet de déterminer
de facon intrinséque le nombre maximal de dérivées principales d’ordre ¢,
de classe my, m—1,...,m—n -+ 1, m —n, ... que I'on peut calculer
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en fonction des y et des dérivées paramétriques. On peut rassembler
ces dérivées en commencant par y'~ puis y'—*, .... On obtient alors
la partie d’ordre ¢ de £ = 2 (X) en ne conservant qu’une sous-matrice
de la matrice relative a la partie d’ordre ¢ de X (Y). D’apres la propriété
but de 'involution, X = X (X) satisfait aussi & la condition algébrique
d’involution et on peut alors utiliser les constructions de la premiére
partie pour déterminer les conditions de compatibilité I = I (X). Pour ce
faire on sera conduit a4 chercher le nombre maximal d’équations inva-
riantes par le premier prolongement de la transformation infinitésimale

i () —d— + 8 LY (u 9. Parmi celles-ci se trouvent en particulier
ox' - Ju® P

celles qui constituent le systéme (S) et donc (S)C (I).

Certaines conditions (cf. exemple II) doivent étre imposées aux wy (y)
pour que, lorsque les conditions de compatibilité pour les wy (y) sont
vérifiées, on ait (S) = (I). Dans ce cas :

DEFINITION. — De telles structures sont difes covariantes.

Remarque. — Alors qu’au cours de la premiére partie on pouvait
intervertir le role de = et y, dans la seconde partie cela devient impos-
sible mais la propriété fondamentale d’involution, nous permet de
ne pas faire intervenir le systéme de coordonnées. Cetle relation,
originale, entre involution et covariance nous parait éfre la clef de toute
application a la physique mathématique.

Nota : Une telle définition sera modifiée ultérieurement.

Par analogie avec la théorie des formes différentielles extérieures on
peut traduire la propriété de covariance par la commutativité d’un
diagramme plan.

THEOREME. — La condition nécessaire et suffisante pour que la struc-
ture donnée soil covariante est que l'on ait le carré commutalif :

Fo)—2 ko)

£ f2
F. (X) AW, Fa(¥)

Nous résumons ci-dessous ce qui précede :

STRUCTURE AU-DESSUS DE Y :

4 o) Y.y UE)

Ak y%r

wy doit vérifier les conditions de compatibilité I (Y).
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SYSTEME AUTOMORPHE (A) :
XY U

A

w doit vérifier les conditions de compatibilité (S)E (I).

STRUCTURE AU-DESSUS DE X :

1 >T(4) » XX W(x)

U = U (X) et wy doit vérifier les conditions de compatibilité (I) = I (X).

Remarque. — Les diagrammes précédents existent aussi lorsque n > m.

On vient de voir que le systéme automorphe ainsi construit induisait
une structure au-dessus de X, a partir d’une structure donnée au-dessus
de Y. On peut donc encore, suivant un procédé déja rencontré, oublier
ce systéme, pour ne plus considérer qu'une structure au-dessus de X,
comme dans la premiére partie. Le systéme (S) est alors un systéme
formellement intégrable, involutif et invariant par le premier prolon-
gement L de la transformation infinitésimale :

. d s a
L =8 @5 + B L @) g

DEFINITION. — De tels systémes e. d. p. sont dits systémes structurés.

Remarque. — On a rencontré plus haut I’association :

Systéme automorphe (A) — Systéme structuré (S).

Nous ne savons pas si Uexistence d’un systéme structuré est conditionnée
par une telle association.

Exemple : La solution générale des équations d’Einstein dans le
vide n’est pas connue.

Ie systeme (I) des conditions de compatibilité est, par construction,
un systéme structuré maximal. (S) est donc un sous-systéme du
systéme (I).

(O]

X
Remarque. — La section U (X) <5 X qui intervient dans la construc-
tion de F, (X) doit satisfaire aux conditions de compatibilité déter-
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(O}
minées dans 1’étude de & (X) alors que dans la section U 5 X précé-
demment rencontrée, ne devait satisfaire qu’a certaines de ces conditions

constituant (S).

Par linéarisation, en tenant compte de la remarque précédente, cette
propriété se transforme en I'existence d’un carré puis d’'un diagramme
commutatif :

P R &,

‘ G,

F. r£4 & l, y-n-
I

(cf. exemple III ou la premiére cellule traduit la construction des
équations d’Einstein et la seconde la construction de la divergence a
partir des identités de Bianchi.)

Un tel diagramme caractérise donc un systéme structuré.

Nous allons donner quelques précisions sur de tels systémes (dans le
cas simple ou I' est transitif) en utilisant la théorie classique des
systemes d’équations invariants par un groupe de Lie.

Le systéme (S) comprend tout d’abord un sous systéme (S,) formé

des équations S, <u, %) = 0 fixant le rang de la matrice :
Jl;m' I‘\.L(T) -
T — A

T Mlgi"_
) ( 31) (/n.H) Ao .

o L)

Le rang de la sous-matrice L (u) est égal a dim F,. Le rang maximal
de la sous-matrice Inv (u) est déterminé par le fait que la condition
algébrique d’involution ne doit entrainer aucune relation entre les u
seulement. Or le nombre maximal d’équations invariantes est égal a

(n 4+ 1)dim F, — (dim F, 4 r¢g Inv (1)) = n dim F, — rg Inv (u);

il est donc plus petit que dim F, et on retrouve dim S, < dim F,. Posant
(S) = (S4» S44), on écrira symboliquement (S,) < (I,). Il faudra ensuite
ajouter aux équations précédentes des équations formées en égalant a
zéro des fonctions libres des invariants du systéme complet obtenu a
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partir de L{*) en tenant compte de (S,). La présence des vecteurs

Inv (u)%l permettra, comme dans la premiére partie, d’écrire ces
ox

. . Jdu Con Jdu

équations sous la forme S,, U, 55 ) = ¢ quasi linéaire en oz avee

(Su) € (Li)-

Nous ne savons pas, pour Uinstant, donner des conditions nécessaires ou
suffisantes pour que de fels systémes soient involutifs.

Par contre, nous allons indiquer une conséquence importante de cette

propriété, qui généralisera le processus de contraction tensorielle
(cf. exemple II).

Imaginons une structure covariante au-dessus de Y et un systéme
structuré S (Y).

D’aprés cette structure au-dessus de Y on induit une structure au-
dessus de X en considérant, parmi les invariants Uy (y', yif), certains
invariants out les dérivations sont effectuées seulement par rapport
a yr—+t =g, ...,y = 2" et que I'on notera U (y, y§) en supprimant
la ponctuation des variables dépendantes.

Symboliquement on sait que I (X)CI(Y) et S (Y)CI(Y).

Prenons S (X) = I(X)nS (Y) pour satisfaire 4 S (X)<I(X). Nous
allons montrer que S (X), ainsi construit, est bien un systéme e. d. p.
formellement intégrable et involutif.

Tout d’abord la condition algébrique d’involution est remplie
puisque S (X) est ainsi construit a partir de S (Y) involutif de la méme
maniére que I (X) & partir de I(Y) involutif.

Imaginons maintenant que par dérivations par rapport a zt, ..., x"
(ym—+1, ..., y") et éliminations, on puisse déduire, a partir des équa-
tions S (X), d’autres équations du premier ordre ¢S (X). Puisque
S (X)CI(X) formellement intégrable, ces équations CI(X). De méme,
puisque S (X)<S (Y) formellement intégrable, ces équations CS (Y).
Elles appartiennent donc & I (X)nS (Y) =S (X) ce qui est contraire
a I’hypothése.

C. Q. F. D.

Nous montrerons dans un prochain travail que la théorie de Gallois
classique est un cas particulier de la théorie d’intégration des systémes
automorphes.
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EXEMPLE I : GROUPE DE LIE

PREMIERE PARTIE
Nous savons, d’aprés les théorémes fondamentaux de Lie, que les

axiomes de la structure de groupe permettrent d’écrire les équations
finies du groupe sous la forme de Lie :

©) of )2 = of @).

Les équations infinitésimales générales correspondantes sont alors :

@) of = uf @) 02 + 5 2L o,

Posant af (z) w} () = of leur forme résolue devient

(E) Fhl = dxl IIL (.'1?) i/ (x) El =0.

Il n’y a que des conditions de compatibilité de seconde expéce :

M o @) ot @) 2052 — 2LD) _ g,

ox! oxt

Posant w' = o/ (xr) dz’ elles sont équivalentes aux équations de
Maurer-Cartan bien connues :

dw" 4 %cﬁfl wk A w! = 0.

Nous obtenons ensuite les identités de Jacobi entre les constantes de
structure :

(J) Cl/tlc C + c/(l cI/L +¢ ih u( =0.

Alors que, suivant Cartan, on considére en général les o} (x)
comme n 1-formes différentielles, dans notre théorie nous considérons n*
fonctions de z, exprimant en coordonnées locales une section parti-
culiere d’un certain fibré au-dessus de X.

L’écriture avec un indice en haut et un en bas est seulement plus
simple.

On construit la suite physique :

P@®: 0-0>T—+F,—-F —...>F,_, >0,
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avec
. !
dimF, =n n .
Pl m—p =Dl +1!
Remarque. — On peut (ce n’est pas évident !) démontrer I'exactitude
de P (0).
Le systéme
du d T
(o ) r(e %) v
devient ici :
dwlll x
ty @) 25D — 2t @),

Les conditions de compatibilité pour les = sont :

on}  onh,
ao_ mi j [
dxm ox! + ﬂ.[l m/ Trlllli TC[/- - 0’
h
dﬂ:z dﬂtl/n 71-/ TE}l TL'/ 0
dxm ox! i tym T B /l =

On détermine le groupe de Lie g de la facon suivante

d&)] (x) ()&)[ \IL‘)

() () alzd((’))—“alzd(w

»d (a,‘,) + atd@®) =0,
("J (‘);n d (am) + d ((*) ) = 0’
_/z d (ant) + (1," d (w ) = O

d (@} at) = 0.

"
Sa transformation finie la plus générale est donc :
o (2) = ai' o}, (2)

et Ion conclut aisément & l’identité de notre théorie de déformation
et de la théorie des déformations d’algébres de Lie.

SECONDE PARTIE

Le systéme e. d. p. du premier ordre définissant I’ est automorphe,
de groupe (de Lie) T'/T cy. D’aprés 1a remarque précédente, la suite P (X))
correspondante est donc exacte. Les suites P (0) et P (Z) ont donc
méme cohomologie, sauf peut-étre en F, et Go, ce qui justifie, a posteriori,
Ioubli de la cellule initiale.

Cas PARTICULIER. — Considérons un pseudogroupe contenant toutes
les translations. Il est donc transitif, et z = Cte doit étre solution des
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T
équations infinitésimales (2) de la page 13. Mais alors il faut _‘2%5__(3’) =0
soit o () = Cte. Maintenant, puisque les F, ne sont définis qu’a un
isomorphisme prés, @, et par suite @,, ..., @,, peuvent étre considérés
comme des opérateurs différentiels a coefficients constants. Les suites P ()
et P(Z) sont donc exactes et le probléme d’équivalence locale peut
étre complétement résolu pour une telle structure [5].

EXEMPLE II
Pour ne pas alourdir I’exposition de cet exemple, nous donnons seule-
ment, trés briévement, les expressions propres a cet exemple, en regard

de la dénomination qui leur correspond dans la théorie générale.
Nous détaillons par contre certains calculs plus spécieux.

PREMIERE PARTIE
1. Equations d’un pseudogroupe :
PSEUDOGROUPE SPECIAL T :

1 1 2 g2 fl (o 3 — 43 2f”(x1).
gy =f@&), ) z* f' (2'), ) :l:+xf,(x1)

EquaTiONs FINIES SPECIALES (forme résolue) :

3

F8 = g—g—s —1 =02t 22 2
2

F1= % =0z 2x x3
1

Fo = Z—i’ =02 x* 23
3 3 __ a3

TP = g% _5r- I.zx =0zt 22 o

© o - 2

Fh = el =0|at 22 o

prm| 20 —ola

2 — dy2 3 3 yl__O 1

Fi=| o5 — —x);c—_z— T e e

@ | _ ¥
g1 — | 29 | _Jd —
Fl= pre s O|lzt o e
|
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I'intégrabilité formelle et de I'involution :

dFs 073
o "o T =0
oF+  9F"
w o T’ =0
973 9F° —0
or* ozt =
oF* 977 |yt P —a
or* oz T x2 7+ x? ¥ =0,
JF1  9F°
or* ozt + T? =0,
0F2 o0F*+ ) 3t 1
Jdx* ozt +y a+y—rz_:——3n z7 =0
071 0F3 1
or “ow t™ =0
LINEARISATION : on pose
y=z+tt(@ +....
FEQUATIONS INFINITESIMALES SPECIALES :
z3
F} = % =02t 2 2
F, = 31:3 =0zt 22 2
-1
F; = z;* =0z z 2z
23 3
F; = d;_ ——E—=0 T T e
) oax: X, @
b .dﬁ_ —_— gz — 1 2
Fé = T n= 0Ojxt 20 o
-1
F} = % =0|xt 22 e
| R d? R - 1
F} = g 13 Ozt o o
1 2
FéEZ} —2—2=0 e e
SUITE PHYSIQUE :
P@O) :050>TEFAFZLF 0.

dimensions :

A=@-M+®
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Vérification de I'intégrabilité formelle et de I'involution :

Fr= 20 Iy —ofe e e
Fi=| O —‘f,‘;§+;_,Fg —0lz 2 @
Fi= (();‘} - 35;2 =02 »
) (F=| 20| % Ry —olw @ @
i R LS R ) FT
m=2 0w Im—o|s 2
Fi= (;I;(i’ —g,; xl, : =0|z" z* e

Vérification de I'intégrabilité formelle et de l'involution :

__JF} JF$ 1 .
~ o2 T om — F] +PFj =0 |xt 2t 2
oF} = OF} 1
97 Tom T

F$ =02t 22 2

Premier prolongement de la transformation infinitésimale du but :

ont d

Jd 0 aJ , , Ont
"t @) g+ ) g +n“(y)5!7+<dy1yl +5}y;+$yg>d_w,

Cas ou elle est une transformation infinitésimale de T

0 (0 1 0
n' (y)aﬁ +T’ (y)<a? y. < dy, +y2 dy1 +y‘l dy';

2__ 2__ , 0
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/]
+")g (y)<dy'} y ( dy;x +y2 dy’; +y3 y3>

d d
+y1 2+y° +y;(7y_§>’

d
< +y2 'l +y'idy1>

Détermination des vecteurs @& :

n 00 (y)

651550——!]‘,

Ba= g+ g (9 g + W gy + ¥ g+ U gy Vg 0 )

Top Ty Wy * oy} ‘dy” 20.11 *ay3 )’

a;,zi+l< Yo+ >+y v g 2
dy~‘ yz 1 2 1 3 dy 1 dy‘ 2 dyz 3 dyz’

@ = };,%er;f@%-yég%-

Recherche des 3 4+ 9 — 4 = 8 invariants différentiels libres :

1 1 ) 1
U‘1=‘l?y}, Uz =y7y2’ Ud:fy:in

1 o1 1
Ut = gg(y? —-yy), U= E(yé —-yy) U= iz(yi — Py

,_1/D@.y) vy D@,y
U= <D (@, xz) yz D@,z :;)>’

s _1/D@,y) y D®E.,y)
U “"(D(xa ) ¥ D (@, x*))

Pour des raisons de symétrie des calculs, on introduira

v L(D@.y) _y D, )\
F\D@, s ¢ D@, )

Les neuf invariants différentiels ci-dessus sont liés par la relation
U074 0208 + U U = 0.

Remarque. — La situation est la méme que dans le cas complexe
analytique ol I'on a J* = — L
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EQUATIONS FINIES SPECIALES (forme de Lie) :

Ut = yly1 = 211?_27
1
[I2 = ;1, = 0,
y-y.
U = !—ll—z ; =0,
a ., z’
U=50i —9'yi) ==
. 1 . 1
© UEE!?(U; — ¥ y3) =
1, .
U=50—5y) =0,
,:1< D@y.y) vy D@E, —0,
Cp\D@ELe)  p D@, )
U L(D@.y) _yDE )N _ 1
—\D @, x 1) y: D (x?, xl) 2
1/D@.y) D,y _ _ 2
yz D (xl x2) yz D (xl’ xz) - (xz)z
GrourE DE LIE & (fonctlons de transitions de U — X) :
u" ch o
ut = dx‘ + o T U id:z:‘
uw = u't z_f;l +u _T + u':x o7
P , d
w=u dx‘+ dx‘—]—ux(%’
’ d(.Dl "d 6
u = k% adil_i_u d:c'
W= ()x- .+ ' de’
6 — 777 ch u’s ’4>__x
u‘_u’*%—l— dx‘+u ox?
7 g D% D9 L, Dyl 9%)
=S T D@ ) T D@, o
_ D% ) D9 eY) D (9" ¢°)
ut =u 7D @. 7 + u 8D @. ) + u” D@, x';
0o — D@5 9) D9 9Y) D (9" 9
=) TV D) T DE ey
On vérifie :

D (¢', 9% ¢°)
D (zt, x2, x*)
(équation invariante u' u’ + u? u* + uw* u* = 0)

(ul u’ + u us + u Ll”) — (u’l u't + u't u’s + u’s u's)
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ceci lorsque :
T =9 ().

EQUATIONS FINIES GENERALES

: Elles sont obtenues directement a

partir des équations finies de ® données plus haut. Nous ne les écrirons

donc pas. Par linéarisation, on obtient :

EQUATIONS INFINITESIMALES GENERALES :
();,:1 N Jdr2 dis Ot (IL‘)
2= @ 5 + o @ %+ (@) + 522 @ g,
\ J: 0z? E ., Ow? ()
2 = = cl zt ==
512 =o' @ g T @ oa o T (x) T 0.
3 — 9! 2 oz’ ; 0z 10(’)3 (=) —
o5t N & 5 (95 1 g 90" (@)
512“ = w* (1) d;:l + o () PR + o* (2) d 5+ & pr i 0,
5 o:t ok? o 0w® (T)
=0t (@) 35 + o @ 55 + (w) . oz =0
o ()E o Jz2 o i()m"’ (:1:) _
2) Slzczwb(x)d* (x)(); ()dJ_I—a ! =0
_ . A
(4 )~
L 0w (2)
— @5 T =0
=2 ()?_1
f?ﬂ = - @ ();‘ + ot @) <dx‘ dx1>
N ,,idw” ()
— ' (7) dx‘ o 0,
2= —w@% —w@%
T ox! dx*
" 997 (@) _
\ +“’(x)<dxl oz >+@ P
Remarque. — Ces équations sont liées par une relation linéaire car
on suppose toujours :
o! (z) 07 () + o (@) 0* (@) + o @) 0® () = 0.
On vérifie :
0RO g g\ (0E 9N [0wd  dwl\ dE
W—W5<W—W><dxi +sz)—<5y“—s P
ow?  Odw?) d83 d (O du*\ 0
_<d?_5x—2>dx‘+gdxl dr*  odx')
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09‘ 05125 Ot Ow’ d£1 d£2 Ow® Ow?* dga
e () (B ) (2%

ox*r  oJx'  \ dx? oxt " oz or' ~ ox
gt o0 fowt et
_—<W - dx2>dx1 T dxi<dx2 aw )=
<m‘w5 —m%o‘)saﬁ Q + 0! Q5 — w* Q2 — 2 Q¢
1 1 1 1

gkt | O? o8}
E(&)’@’—Nm‘)((%;—i + #)—(m“w‘—w‘m“)d—iz

d
2 6 i 3 L 2 4 —
— (0w w“w5)dxl+£dx(mw w?w) =0,

. oE! og? dg3 , 98 _
S;z = (dx‘ +dx">—wsd_—x2 @ or +Eidx‘ 0.

2. Conditions de compatibilité

Nous allons chercher les conditions de compatibilité pour les « direc-
tement sur les Q& = 0, sans passer par la forme résolue de ces équations.
1

Nous obtenons tout d’abord la condition de premiére espéce :

S 00' 0w de?  dw'  dw'  dw?
Jdr'  oJr* Jx' Jr'  Jx Oz
det =0,

&)20,)6—(03&)5 0.)3&)“'—(1)1 wb 0.)1(1)5—'&)2&)‘

w’ w? ®°
a laquelle on ajoutera :

Jdw’® Jdw® Jdw® Jdw* Jdo* ow®

0r'  Jx* Jx'  Jr' IJr*  Jx

0w — w3 W et — ol © o 0 — 6w

det = 0.

0)7 ms m'J

Nous simplifierons ces relations en remarquant :

= — o (o* 0" + o’ 0 + wf o).

w2 Wt — ww W et — ol et
det
w’? w?

On étudiera plus loin le cas :

w0 + 0w 4+ 0w =0.
(1) On suppose désormais :

o* 07 4+ 0° 0 4 0 w? £ 0.
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Les conditions précédentes se transforment donc en
dw? , (00  Ow! 5 [ O
a?ﬁ>+“’ <%—d_x7>+“’ (%
Jw' , (00"  Ow' 5 [ Ow*
W)‘“" <W‘w>+‘” (a‘x—

Il faut maintenant éliminer les termes en £. On doit donc annuler
les déterminants obtenus & partir des précédents en dérivant seulement
une colonne. Dérivant les déterminants précédents suivant une régle
connue, nous allons montrer que les (2 fois 2) = 4 conditions nouvelles

sont en fait des conditions de compatibilité de seconde espéce.
Soit tout d’abord :

w! (’_&)2_ J—
ax?

w! E _—
dxtf

Jw?
~5)=0
Ow®
- ﬁ) =0

C 0 (o) 0w o owt o ]
oxi\ dxr*  Ox* ox'  or or*  ox
det ()—Zz_’ (00 — 0 e’) et — oo o —ee |=0.
Z)%‘Oﬂ " "

Mais, d’aprés la figure :

o’
w3

Jwt
ox?

Et donc :

Jz'

Jdw? )
— dx_’ w? wl) — 0)2 wﬁ
dw! \ .
—oF = ¢t (2) | 0* ot — o't 4 () | o
w2
— a? wi (1)5 P (J.)2 mb
. . oct Jdc?
(0w — o? ws)d—x’ + ol = 0,
oct dc?
(&)3 oF — ! &)6) 3 + w8 It =0,

(0w — oo
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On vérifie que deux seulement de ces relations sont libres. On en

déduit :
¢t () = c' = Cte et ¢ (r) = ¢t = Cte

et les deux fois :
1 condition de premiére espéce 4+ 2 conditions de seconde espéce,

%—%=Ct (w”w’*—w‘w“)—l—ﬂ Q)S,
_g_;_)_z . % = ¢t (wz Wb — @3 &)5) +c'2 7,
z—j — % = c"! (0 0* — w! 0") + ¢ w?,

En tenant compte de
o' 0’ + 0?0 + e = 0.

Il ne reste plus & déterminer que 7 — 6 =1 condition. Formons
pour cela :

027  gQs  9Q°
I + I S T
Jxt Jax? ar?

(007 ded  dw' og | B
=<a?+ oz T W)(dxl T Tt %)

0 Jn?
+£10?<W+5a—:~2 +W>=O'

Mais on sait que

(w‘ ® + 0w + m9>
v

1

Jzt " oxt " ox’
+ Eid—x‘(wk " + ©° 0¥ 4+ o' w?) = 0.

(w"w7+ww“—|—m‘m)< d?_'_d?)

On trouve donc la condition de seconde espéce :
0w’ do® | Ow®
g T o T ow

m4w7+w5m8+m6wﬂ

=c".
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Soit, au total :

2 conditions de premiére espéce,

7 conditi I
conditions (I) 5 conditions de seconde espéce.

Nous allons maintenant montrer que les constantes ne sont pas
quelconques mais qu’il existe entre elles deux relations () bilinéaires.
(On rappelle dim F, = 7, dim F, = 2.)

Il suffit pour cela, conformément & la théorie générale, d’exprimer
que les systémes e. d. p. précédents, involutifs puisque (&) et (2) le sont,
sont aussi formellement intégrables.

Exemple :
0 [dw? O’ _
aa(a‘:s—w)“““:"’
9 , ow? 0t 0w* Jw’
!  Ow?
E—wf)(ﬁ?—d—xi)_{_'”
Jdw®  dw!
+“2<Tw—%7>+"°’
OE(&)‘&)"—{-&)sms+w5w9)(—6162+c263),
d’on
c(—ct+¢)=0,
) % —ctet 422 =0.
ArpLicaTION : Pseudogroupe I' spécial :
0 =c.0 -+ ¢2.0,
0 =c.0 +c*——5:1—2,
1 1 ?
~@r = (@ -9+~
0 =¢c1.0 + ¢2.0,
L, +or—1 11
@ =0 #  YTEF @y g,
x | ’ _ 1
@ e YT @
¢t =—1, ¢t =0, ¢t =0, cr=—1, 3 =0;
on vérifie

0(+1 +0=0 e 0.04(—1).0=0.
(2) Considérons maintenant le cas
w* 07 + 0 08 + wte? =0.
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Nous avons donc :

(J)’ (A)‘ C')7
0 A | 0 =w ()| o
(1)3 (‘)G &)9

et en particulier I’équation

o = dimo(x)—o

Le pseudogroupe ainsi obtenu est intransitif.

327

Les conditions de compatiblité s’obtiennent alors en exprimant que
les termes en £! obtenus par élimination des dérivées d’ordre . 1 peuvent

disparaitre en tenant compte des équations d’ordre O.

Les conditions de compatibilité sont donc :

[ Ow? Ow?

o w = @ @),
du?

e~ = @ @)
dw! Ow? Y
g o — ¢ @)
= = @)
d o d())‘ ,
= @),
dot  dw’ , )
-d—% — o = c't (w° (7)) w?,

L 0w dwt | O

| dx' T oz T o= 0.

Mais il ne faut pas oublier les conditions de compatibilité
permettent de joindre les équations :

Qo Ow®
O et gy oz,

=25 7F [ dd S
dx,- - ()IL'/ ozt E oax! 0

aux autres équations du systéme généralisé (2) :

Q = + + _|_ £t o

1 - dx/ dx/ dxl oxt .
(j=1,2,3).

Qi+ = m‘ + £t dw*+/

1 - dx/ dx/ dx/ ox!
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On forme
Jw® . .
00w dw? ozt ¢ ®
or' 0x* 0’ dw® , /s .
det o o o =0 = 736—2=c2(x) w4 ¢ (x) | w°
o 0w dw? s .
et les équations telles que
i 29]
dw’  dw® 5 o/
Jdx' ox? ozt oo
det o e H 9’3’ =0 lorsque ¢! v 0.
or!
0w/
4 5 i
i ® ' prl

Par suite :

L 0¢ (x) ,0c% (x) 00"
13 pr =0, EW—O lorsque E()_xT—O

et donc :
¢t (x) = ¢ (»° (x), ¢ (x) = ¢ («° ().

Ainsi trois conditions

% = ¢ (w° (7)) w! + ¢ (& (7)) ',
0w®
G = (o @) o + ¢ (o @),
dw®

T = O N @) o7+ ¢ (o @)

Nous obtiendrons une condition sur les ¢ (»° (x)) en exprimant que

le systéme (I) des conditions de compatibilité est formellement inté-
grable et involutif :

Jc? de'?
0=ctc® 4 c'tc? T2 o2 — ¢ ) w.
+ + dw® dw®

3. Normalisateur

Nous allons déterminer le groupe de Lie g dont les transformations
finies u— u laisseront inchangé (2). On commence pour cela par

e

. ; dz} e
mettre (2) sous forme résolue, en prenant 7! et ﬁ comme dérivées

paramétriques.
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dil 0)2 G)G —_— 6)3 0.)5 zfl + _ O
X! oo —wetdrt T
d‘&2 0.)1 mﬁ — m?ﬁ w&- d&'} + 0
ox! wlw —eietdrt 77T
On devra donc avoir :
w? w' — W’ w? 0 — o w’
O @ — et ol 0 — et
et donc
6266 _6365 _0_)160 _6365 —610_)5 _626&
®? 08 — w3 b _co’w“ — ot _w‘oﬁ — w? ot
par suite le cas de figure :
propuit
exterieur
w4
W h R
w?
et ainsi :
w! w! w*
W=a ()| w4 a' (@) | *
w3 w? w°
ak wi &)L
o =a (r) | o+ a” g
66 &)3 wﬁ

Maintenant :

-3
[— 0 (@ 0" — 0! v + of (0! ©° — o o*)] —g%

0-3

+ [~ 0° (0* 0 — 0 ) + 0? (0! 0’ — o w*)] d;n

+...
ok?
[0t (@ 0 + 0 0f) — ot (@ 0 + o )] 55
— [c.)2 (o)ﬁ »' -+ w* c,ﬁ) — »d (mi w + o’ wu)] gi:; 4.,
“’1(0350)7—1-&)5&)3—{—&)“&9)@ —m‘l(&)’*m7+mb&)8+m5wﬂ)xﬁ +
dx? ot T

o5

ox?

w? Jit

w! ox

o' @0’ + w0l 4 o e £ 0 donc +. 0,
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de méme :
. ) . d&i oaz A
9 3ok vl o 6) 8 105 — 2 gt i =
[0 (0 @ — w! o) — b (0! 0F — o u)](dx,—l-dxz)
23
F[— o (@ o — o 0¥) + 0 (v 0° — o w?)] 3—;—1
— ot (0 07 + o 0 + @ o ) d’
dx' ()z
3 5 9 Q
— 0’ (0* 07 + o° o --}—m“co)d—x1 4.l
2 3 3
- 4+ — = 4...=0.
Calculant le coefficient de £’ on doit considérer :
E_,i [(m1 0 — »? mk) (_}% ®! — ! (% (wi 05 — 2 w.t):l
w! (0* 0 + o 0¥ + o° o

&l [[(w" ot — ' o) dix’ 0 — w? dix’ (0! 0° — o2 w5)]

w! (mk w7 + 0 » + W’ &)\")

b

)

mais on sait que
o2 o d(i‘l' (* 07 + ' 0¥ + o ©?)
?‘z j—
dx‘ +dx-+dx‘+ w* 0?7 4 0 0 + wb ! =0,

donc :
ak 67 _I_ Cl_); 68 _|_ Eli 69 —_ a:i ((A)" (1}7 _I__ GJ'3 (1)8 + (‘)6 (,)!I)‘

On montre ensuite en considérant les coefficients des 7! dans les

ex d El 9%
pressions € et o que

at =0, 2 = (Cte, a’? = Cte.
Par suite :

o' w' — ot w"—-@—w"ﬁ"’—ﬁ*’a‘
dl

‘((u"oﬂ—l-w w"—}—w"w-

(@' 0’ — o2 m")iw — i(c.)‘m*”—c;ﬂm‘)

o! (0 07 + 0’ o o' + o)

devient, en remarquant :

o —wet=ao (@ e+ ae’) —a (@ + a?e?)

= a' a’? (ml 0 — w2 mk)
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soit
_ a?
w'." —_— EG mﬂ
—\ e/~ 0
0r' \ (o' »° — w? w*) ’

a3
@ = e o + a”? (0! 0¥ — 0 wt).

On aura finalement les transformations finies de g :

ut u' | ot ut u*

W=a || =a|u + a’? | w

ﬁ-’i uii EG u:) ul‘.
u’ u’ uus — uwdw
u=a | ut + a’? | w ut — ut us
u’® u’ utw—u? ut

Les générateurs des transformations infinitésimales de ¢ sont :

0 , 0 , 0

Touw TWop TWep

0 /] 7]
Cow T o T G

) 0 0 , 0
Cow T op T G

0 ., d 0

/_____ - ﬁ__
Wow T8 Tu ous’

‘ Ny Ny 0
(u2 ub R a3 u))567 + (u? uk — ul u»)m + (u1 u5 — u‘l ub)_a__lﬁ.

5. Théorie des déformations

A. GENERALITES
Il nous faut maintenant étudier I'effet d’un changement de marque
sur les constantes de structure.

On aura par exemple :

at [(c! (w? o' — w® w®) + ¢ 0]
=¢'[(a' »* (@® »® + a” w®) — a' o® (a w? + a2 )]
+ ¢ [@’ 0 4 a” (0® 0° — ® w’)]
at ¢! (&)2 b — @3 (.)5) + at ¢z o’
= (a' a? + ¢* a"?) (0 0® — o’ ) 4 ¢ @® w7}
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’

ct a3

1 — p— 2
C=r T ”
al
2 - 2
¢ =5
2 2 q'3 3
= @ 1_}_l,l_aa . a o,
al a’2 a1 al ail a'2 al a3
a a’
w2y — T p2 ’2
=S e
1 a’®
" = 3 2
¢ =-5C a:;a'zc’

B. CONDITION DE RIGIDITE

Nous allons maintenant étudier B! (Y'), Z! (Y) et H!(Y). Pour cela
nous allons linéariser au voisinage de la transformation identique de

g(@=1+t1t. ., =t +..,a* =142+,
@ =14+t +...,a35=t1+...):
Ct = —22ct — 25 e,

1

C: = (7\1 _— )‘3) cz’

1
B, (Y) (:‘Il =ac — Mt — A"

C2=xc _|_ ()\’2 — ;\3) clg,

Cl=— e — e
1

Utilisant les identités de Jacobi généralisées :

(—C‘ —I—C”)C2 —|—C2<— C __{_Cz) =0,
Z (l'\) 1 1 1
' —eCt—c1C+ e C? 4?0 =0
1 1 1

1

Vérifions I'inclusion
B, () SZ, (Y).

Du point de vue fini :

al

¢ (_ ¢! + E:;) — T [Cz (_ ct + C“)],
[_ e 4 g En] _ af_,lga:x [cg (_ ¢t + C“)] + ,;_‘(_ c'tet 4 ¢ cd).
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Du point du vue infinitésimal :
c? (_ ct _|_ C:‘) ()‘1 —_ )\:t) _|_ c2 (X'2 ct + A3t — A2 €z — A3 Cz)
L =[e (= )] =1 — 27 =0,
— A2cte? + A e't 2 + A3 e e — 0\1 — p) c't c2‘
+ A2 c2c? _|_ (1'2 — )\3) c’2¢d — )2 c’2 ¢’ — A3 ¢ c’?
=N (—c + )] —M(—c1er+c2¢") = 0.

C. Q. F. D.
AppLicATION. — Détermination de B, (X') et Z, (1") dans le cas
particulier du pseudogroupe I' spécial : |
ct=—1, ¢t =0, ¢t =0, r=—1, =0
Cl = A"
1
G =0,

B(),Ct=—2+1" dimB, ()= 3’

€= — 22 4,

1
C =0;
1
C:=0, N
Z,(Y) (’:3 —0 dim Z, () =3 et dim H, (Y) = 0.
1 s
Cette structure particuliére est donc rigide.
Détermination de ¥ : .
A2 =0, 7\2 = A", A2 =23
7 d
”’W +u du‘ T SE o’
d , 0 L, 0
Youw T or T G

3 générateurs

. I .
+(”2”"_U"“")r +.oo (@ u"—u‘lu‘)g?l;,
0 J d a
b7 [ —— . 8 7 0 _7
udu’*—l— —l_udu'_lgw()u’_I_udu“—'_udu‘J

C. OBSTRUCTION A LA DEFORMATION

Puisque dim F, =2, dim F, = 0, le calcul de dim H, (V) est équi-
valent a celui du rang de la matrice définissant Z! (r ), soit :

—c¢ 0 | —c+4ce 0 ¢
i 0 —ciJ —ct ¢ e

(1) e #0: dimH, (1) = 0;
2) c2=0: c¢2¢0=0.
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Nous allons rechercher une structure qui ne soit pas rigide mais qui
ne soit pas (formellement) déformable.

Nous cherchons donc une structure telle que H* (Y') 2 0, H, (Y') = 0.
La matrice précédente devient

0 0 —ct4+¢2 0 O
00 —ct ¢ ¢

En particulier, si ¢! = ¢* (point singulier) :

C1 = — x’ﬁ Ci,
1
Cr=2¢ct — Mt — '8 clg’
1
B, (Y) 92 =0, dim B, (Y) < 3;
C? = ()‘rg _ X’;) c’,
1
03 = — )\'2 cfi,
1

‘ ! 3 (2 2 (3 — dim Z, (lm)é‘l‘,
L mt @A EEE=0 gmE 1.

On peut imaginer de prendre :

w! =1, 0 =0, w = 9?
ot = T2, w* =0, 0wt =7

= w0
w? =0, wd =0, » =1 >

4 condition de satisfaire aux conditions de compatibilité (I) :

0—2% — e (0—0)+0.0,
0=t et — o) + 0.0,
0=c (0—0)-+0.1,
_0&)“

0x*

do* 21 3 2 6 2 0

5:17—0:‘: (0® 2 — w) 4 ¢2.0,
1=¢t(0—0)+e¢2.1

0

o

w2 0

Puisque 'on doit prendre

0 — ¢t (0 — 0) + .0,

\
a\
I

= 3
= ct=c*=0

w3 =0,
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il reste & satisfaire
= =0,
v il [ERALR
ce qui conduit, par exemple, a4 prendre
wt=1 = 1=0.
Le systéme (2) devient alors (8 équations libres) :

L =0 £ =0
L =0 L =0
3—% -0 Z‘E{; —0
2o _y eews e _,
ox? . oJx?

= =0 = =0
% =0 % rp=0
= =0 =0

Les transformations infinitésimales du pseudogroupe correspondant :
d N 9 sy O
bom TE@) 5 —E @) 5
Ses transformations finies sont :

povta per+f@). =2 —f@)
Les constantes de structure sont alors :

¢t =0, ct =0, ¢t =0, c¢2=1, ¢ =0.
Mais dans ce cas :
Gt =0,
B, (r)¢ &7 = —2", dim B, (Y) = 2;
C? = (0" —121"),
& o,
Z, (Y)( (:33 =0, dimZ, (Y) =4
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et par suite :
dim H; () =2 et dim H, (Y) = 1.

Nous allons vérifier directement 1’existence d’obstructions a la défor-
mation en posant :

c,=c+tC+t223+...,
1
(i(?—l—ﬁ(;ﬂ—|—...>(—(t§l1+t?(231+...)+(t(133+t?93+...>)=0,
—(t?’i—l—t?C'i+...>(tC2+tzcz+...>
2 1 2
—l—(l—|—tC'2—I-tzC’z—[-...)GCf‘—i—t2 C3—|—...>=0;
1 2 1 2
0.t+tz(—C’C1—|—C2C3>+... =0,
1 1 1 1 ,
tC“+t2<—C”C2+C’2C3+C3)+... =0.
1 1 1 1 2
Au premier ordre C* = 0 puis au second ordre :
1
CcCt=0 e C1C=0C.
1 1 1 1 2

Tout cocylce €Z, (Y') n’est pas forcément intégrable.

C. Q. F. D.
SECONDE PARTIE
Equations de T relevées au-dessus de Y :
{ s 07’3 .
Fi (YY) = oF =0|y y»» ¥
. a2
Fi () =| 55 =0|y p ¥
dnt N
Fi(Y) =| 5 =0ly p* y
3 K
FiY) = 95| =2 =0 s v
2 (Y)«¢ o o
Fi (Y) = T _EZO gyt oy e
1
FM=gn =0y v e
F: (Y) = 331 — =0y e e
ont n?
\Fg(Y)Ed—yl—?zo yi e e
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Premier prolongement de la transformation infinitésimale

d J 0 d
) g @) g 7 @) g+ (G 0+ G+ G0 ) g

on’ on?
(5508 Gt + 508 i

Cas ou elle est une transformation infinitésimale de T :
0 7] 1/, 0 . 0 , 0 , 0
o g+ (9 o+ 9 g + v o
of 0 1[5, 0 . 0 v 9 o9
o+ (Viage + 9 )+ v o + v

Détermination des vecteurs @ :

B, ﬁdiy"
032—>d‘;_ +5—}é<y:;% -I-yéa%é— +y%d—z—? +y§a%>»
531—>(%,,+%<y%537+y§£§>+y%diy?+yi£f§>

()
@4'_>yidy1 +y°

On vérifiera qu’ils forment un systéme complet. On peut donc trouver
au maximum 6 + 3 — 4 = 5 invariants différentiels libres :

1, 1 1,,
U= =y, U2=fy;, U3=—2(y,:—y"y:),

)
B s 1 D(y’,y") ¥’ D', y?)
Cepui—ve U-n(pEs - o)

Les équations du systéme automorphe (A) sont alors :

(U =) U=yl = o,
Ui =) Ut = Ly — o,
W) U =) U= 24t —y'y) — o,
(Ut =) U = .2 — 57 ) = o,
o= (B S -
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La connaissance de I’application X 4 Y nous permet donc de
connaitre les o (r) en exprimant que y = f(x) est solution de ces
équations.

Les o (z) doivent satisfaire aux conditions de compatibilité (systéme
structuré) :

&) . .
dw Jdo s
pril =0

Mais Yintérét de ces manipulations réside surtout dans le fait que
Ion a maintenant induit une structure au-dessus de X. On détermine
pour cela son groupe de Lie & (X) :

0 ., 06°
ut = g+ g
2 dg! . 09°

ux=uxdz+ux(ﬁ7

;50 ., 09
6 (X) ui:ufdzl-l—u,{‘d—(?

xt’
0 p)
ut = u 5%+ u G
D (¢%, 9%

”x—”xm

On associera a ces transformations finies les équations finies géné-
rales & (X) puis les équations infinitésimales générales % (X) suivantes :

dwt (z)

Q4 = ok @) 0o, + 0k @ >;»1 +22i@
% = ot (@) 0o + 0k (0) 0y + 225D o,
*(X) 51251{ = ot (@) d?r;l + ok (@) di:l +& 0®§x€x) =0,
= i @ 3—55 + o1 dwg(xsx) =0,
f=ui@ (55 +5) +riEP-o

Le pseudogroupe correspondant, agissant sur X, sera intransitif :
Posons
) _ WX 0% — wF 0%
wx = Y
wx
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Puisque I'on a

17 0 (ol
((x)x (n)x —_ wx &)x) <3‘i1 + di2> + Et (Q)x Ct)xdxt C'Jx ﬁ)x) 0’
on en déduira :
0y = 2L @) _
1

Cherchons alors les conditions de compatibilité I (X) :

Tout d’abord :

02t  0Q%
v

(-2
_(9w' _ dw*\ [oE | JE* ort)
B ()R

or*  oJx')\dxt " ox? oz

Mais il faut aussi tenir compte des équations :

ddm,";
dog dE! | dug 5 . oxt
oz oo T 0w o TE om
dd&)x
d(A)x dg + d&)x 022 + ox?
Jxt dx* ' 9x* dx® g WA
d’ol
2"
9’ dw® ., " ox'
Jxt  ox? 2 ax! Jt
det dw! | =0  lorsque El—x =
wi &)2 Eiw q
Jdw3
3 | S
) w* 13 o
On obtient finalement :
d 1 d 2
Friat L COL
0&)3 d 'y ,
1(X) sl
dxf = ¢x (®°) o' 4 ¥ (0°) w?,
dng

P cx (@°) 02 4 ¢ (0°) w*.
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Ou les constantes (I) de structure doivent satisfaire aux identités
de Jacobi généralisées :

'yt ,odCx dCx
¢k g + o o (cxdo—cxd W =0,

Maintenant on remarquera que 'on peut écrire plus généralement :

! ay' ay* ay?

wy (y) pr + 0¥ ) oz + o} o = !,

Jyt ay? o
ot SE et L et L =

I oy ) oy oy
@Wat@ L o Het@ L et L =

Iyt ou? o
ot@) 3L eb@) Sh tet@ 5L =

D@, y) , oD W-Y) | D (', y*)
,\ oY (y)D(:r:1 x) (y)D(a:1 m*) ¥ (y)D(x‘ x?)

= wd.,

Utilisant les conditions de compatibilité pour les wy (y) on déter-
mine facilement le systéme structuré (S) dont les o (x) doivent étre solu-
tions, lorsque oy wy + wi 0¥ + 0y 0y 20 :

Jdw! ow? -

g7 gz = G @ et — ) et e,
) 0w’  Jdwt

T g oy (0! 0f — w? w?) + ¢y v

Cependant, pour que la structure soit covariante, on doit avoir aussi
des égalités telles que
0m° 0w’

W o = (0! 0t — w* ?) ().

© oz T Y oz
Le membre de gauche s’écrira, en utilisant :
Ow® D 3) 0
0321—[1)8’51 Z;dxi( ot — ot ol) ;
J D@,y | (DAY
—I_ (&)%' &)\ m\ (‘)Y) dxi D (x1 x2) + :I _&)% D (xi, x2) +~ .

(', z%)

[(&’YG)Y—GJYG)Y)D—(y——y_) +]

o2 WH ) '
D (y?, y?) dwy D (2%, x?)
*| D@, a:“)cTaf:T_’_mY ox el
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en développant et examinant les termes comportant des dérivées

ry
secondes oo

(0% 0y + 0§ 0y + o} vf)
, D@ yh) . D@, y)\ 9 D@ y)
X[(‘ b,z T D, x)> 9z D (@, z) T ]

Or le membre de droite ne comporte pas de telles dérivées. On doit
donc avoir :

wy 0y + oy 0} + of oy = 0.

Ce cas ayant déja été traité, le systéme structuré est alors :

Jdw! 0w .
e K L
dw? dw* . )
il R R CIRE
S
ORI | |
P o e
@]+ o
vw” w2 Wt
Jdz?

Mais on a
wy (f (@) = 0 (2) et donc ¢y = cx.

Cette nouvelle structure spéciale est donc covariante puisque ’on a

alors
) =1 X).

La relation o oy + 0§ o} 4+ o} oy = 0 caractérisera donc les struc-
tures covariantes.

SYSTEME STRUCTURE

Aprés avoir lu la seconde partie, le lecteur vérifiera sans peine que le
systéme suivant est un systéme structuré :

2 3
G = o =) e
3 1
1 2
(S) 3_% — % = ¢t (wi ® — @2 wa) + c? w«.»,

dwb dw Jdwb dw* dw* dw®
1 e e —_— —_ —_
© <dx“ dx‘*) T ot (dx‘ ox? > + o <dx‘l oxt > =0,
dw’ Jw? Jdw?

(—)F—%—a—iz— w=c3(m‘m7+w5m8+w"m°).
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EXEMPLE III : RELATIVITE GENERALE

A la premiére partie de la théorie générale correspond la création
et I'étude d’un espace de Riemann a partir de ’espace de Minkowski
de la relativité restreinte.

A la seconde partie correspond la recherche des équations du champ,
dans le contexte riemannien de la relativité générale.

Le développement de notre théorie générale est donc en fait analogue
au cheminement suivi par Einstein de 1904 a 1915.

Dans tout ce quit suit, nous adoptons les notations suivantes, de
fagon 4 montrer que I'utilisation d’indices tensoriels est une simple
commodité d’écriture :

wy; (x) au lieu de g¢;; (2),

i (@) » "k (@),

Pk (X) » R () (courbure),

xiixt () » Ciji () (courbure conforme),
c » K (constante de courbure).

Les développements limités aux différents ordres du paramétre i
seront interprétés par les majuscules correspondantes :

Exemple :

W;j (.'L', t) = Wiy (x) + 15121»,- (.’E) -+ f? ?ii (.’L') +....

PREMIERE PARTIE
PSEUDOGROUPE SPECIAL I :

Transformations laissant invariante la métrique de I'espace de
Minkowski de la relativité restreinte :

EQUATIONS FINIES SPECIALES :

agt oyt _
nkla‘i} W = Nij.

EQUATIONS INFINITESIMALES SPECIALES :

¢! gt
i 525 +7)jld—xi =0.

Ce dernier systéme est évidemment formellement intégrable, mais il
faut le prolonger une fois pour le rendre involutif, en obtenant les
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équations
02 Et

ox’ oxF 0.

I' est donc en fait un groupe de Lie dont le nombre de paramétres
est

dimR, =dim R, =n(@n + 1) —

n(n+1) n@n+1)
2 - 2

C’est donc le groupe de Lorentz inhomogéne.
Utilisant les méthodes de la théorie générale, on obtiendra :
EQUATIONS FINIES GENERALES :

ay* dy’
ox/ ox/

é) or ) 5

= w;; (T) (forme de Lie).

EQUATIONS INFINITESIMALES GENERALES :

) ok Jik do; (2
) ij = i (x)%?’, + wji (@) 5= ar T & md;f ) =0

soit
£LE)w; =0 (équations de Killing).

Pour déterminer les conditions de compatibilité pour les w;; (z), il
faut rendre ce dernier systéme involutif. Pour ce faire, on définit les
symboles de Christoffel :

Vi (@) =5 w” @) (9) v () + Gk wj1 () — O wji (7)),

avec o () w;; (r) = 04 et on considére, au lieu de () :

ot oEk . Odwi; (x
Q= o @) 9 + 0 (@) 0o+ “d;f ) o,
YOS VAL S
1 k=01 ox* oxk Yrk ( )dx/ + Y/r (x) dx‘
— T _Q_ cr dY/k (x) —
Tk (@) o TV gy = 0.

Remarque. — Q, ; et I‘ % sont des tenseurs.

Nous allons chercher dlrectement sur ces équations les conditions de
compatibilité de premiére et de seconde espéce. Définissons d’abord la
courbure :

& dii i
e @) = 2@ 20D Lyt @) — 15 @) 1 @
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Linéarisant, nous trouvons :

Riju = dxs (7 o @) + 0 7 Plrie ()

. dot s
+ 01 ot (@) — 3 pou @) + £ 2@ g,

p: (2) est formellement intégrable lorsque Riy est une combi-
1

naison linéaire des Q;; :
1

Définissons :

Pijke (X) = wim () p™ jaz (),
on vérifie :

Pijkl = Pklij-
Linéarisant, on obtient
Riju = 92 (55 pripe @) + 35 prie (@)
11/ = o 1 Prkji /Przk
. J T
+ 0% pruj () + 65 prju (X)) + ET Pzd/;S ) —

Posons £, = w,, () " on remarque :

o,
Q= 2= +dxi+2y,,zr—0

d”" d s $
13:;'/:1 = d—is(af ki + O pTuk + 0% p7uj + O o) +. . =

Les conditions de premiére espéce sont donc :

07 kst + OF pTur + 0% p"uj + O pTim
— O p’kje — 85 p*ux — 8% puj — O] p%ym = 0.

Contractons en s et i avec p; (¥) = pr; () = piju (¥); on obtient

("rje + 07k + pTug) + N pTjre — OF prj + 0% prj — p"jm = 0,

1 .
prym = 7 OF pjk — 3% pj)-
Mais on a -aussi :

doi; (z)

or 0

Rz[ = Pzr(x)dx/ + P/"( )dxl +£r

ce qui nécessite :
pij (X) = (0 — 1) cwy; (),

ou ¢ est une constante.
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Les conditions de compatibilité pour les w;; (x) définissent donc un
espace a courbure constante :

@ plir (X) = ¢ (O] % (T) — &% w1 (X))

Dans (I), la courbure pi;; (xr) est exprimée au moyen des o;; (z) et
de leurs dérivées premiéres et secondes. Il n’y a qu’une condition de
seconde espéce. Nous allons déterminer le nombre total des conditions

de compatibilité, en utilisant le diagramme :

0 0 9 0

| ! } |
0 % 3T 5F. F 0
o] > Rl 3 J;l(T) J;J(F') ’!1 o]
0 % ) I%(T) J 41(5) é

| | |

fe) [0} o

dim R, = dim R, = "("TJFI) donc dim g, = 0

et
dimF, =dim O F, — dim O T
_ @+l n@+1)  (n42)! n_n2(n2—1)
T 2I(n—1)! 2 3l(n =11 — — 12
NORMALISATEUR :

On considere la forme résolue de (2) :

98 |, 0" AT

0xk—|'60 Dkm 57 +|w P £/ =0,

¢, groupe de Lie, puisque I' et donc & sont transitifs, sera déterminé
par

Wij _ @i g 900 _ o dou
= _— ) -_— = —9
®km ®Okm ox/ ox/
dakm o mil dwu — d&)il

E = w; — = — Wi O —
ox/ o ox/ im K Gl

" Ioim dwh!
=0,

Wrm () = @ () 0xm (2) et 977 (@* @) = 0.
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La transformation finie générale de g est donc -

51,- (x) = W; (1?).
On vérifie alors
T (@) = Yix (@),
ce qui a pour conséquence :
-1
t=-¢
a
ou, du point de vue infinitésimal :

C=—1c¢
1

L’espace plat ¢ = 0 est donc seul déformable.

Nous allons montrer maintenant le réle fondamental joué par la
suite physique, & I’exclusion de toute autre suite.

En effet, si nous ne nous contentions que de () pour déterminer (),
il faudrait écrire que () est le systéme

Qi Qu _
! —_1 = 0, I‘IJ/\ = 0.
1

[aFy) Wiy

Or on sait que :
Riikl = (8} ij —_ 61]‘ 521[),
1 1 1

Par suite, R, > R, n’est surjectif que pour ¢ = 0.
Il faut donc utiliser p, (£) pour construire :

« Q; Qu T,
2 LI T LA =
( ) (Ary; W/ 0, 1;/k 0’ ox! 0

Utilisant la dérivation covariante classique et le fait que I';; est un
1

tenseur, on a

i, =0 .
dIl‘i = { e
RAR okt = — Ert Phij3
ox!

Enjktm — Eqjimt = (— Erim =+ Erme) P7hij
=& 0%rmi OTkijs
mais
Eajktm — Eajimt = Gujhim — Euyp)ime
= Es[/’k Pxilm + Eink Ps/lm + £i|js Psklm
— 5 [07kss Pitm A Ohis 0% jim @75ty P rim)s

I
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(S) est donc formellement intégrable et involutif V ¢, si :

0krj PTitm + P%kir 0 jim T P%rij PRim  PSrmi ki = 0,
lorsque
pijk[ =2C (6; W — 51‘ w,-,).
— Le cas ¢ = 0 est trivial.
— Nous laissons le lecteur vérifier 1'égalité pour ¢ = 0.

On traduirait aisément les résultats précédents par des diagrammes
commutatifs, conformément a la théorie générale.

SOUS-PSEUDOGROUPE :
Considérons :
{ £ ) wiy = 1 (@) 0,
£ (5:) wij = s () 010
Alors :
£ (e 5D oy = (5 @) 25D — g 02D 0,

Le pseudogroupe des transformations conformes est donc un
surpseudogroupe défini par les équations (£)c(2) :

() $u_fu_,
;) Wi

On sait que I'étude de lintégrabilité formelle de ce systéme fait
apparaitre les conditions de compatibilité de premiére espéce :

1 )
*p = ol + m(aik pjr — 0o + @y p — wjx plr)

+ (‘,;T)P(n—_—z—) @lojx — 0 wj) = 0.

On vérifierait aisément qu’elles sont automatiquement remplies dans
le cas d’'un espace a courbure constante, comme cela était prévisible
d’aprés la théorie générale.

Le diagramme commutatif :

Ow,
Op—o

~
ore
>
d

-
o

|

ey
W
=
N
o
Gkd
kil

'3
R
o

«—
<«
‘o “—O>==PIHO

[e]
L

OE—P) =950
J
oy
O €—1e
=2
¥
o
O¢—m
~—

ANNALES DE L’INSTITUT HENRI POINCARE



348 J. F. POMMARET

permet alors de calculer (ce qui n’est pas évident autrement) :

A 2 3
dim Q, =dimh, =dim O Ff, —dim O T
dim F, = dim O Fy — dim O T
dimQ.z—dimFi=dim(2)Fo—-dim(2)Fo=1(g+_l)

soit
dim @, = HOEDEFAEZI,

Nous terminerons cette premiere partie en calculant explicitement les
opérateurs différentiels @, des suites physiques rencontrées, de fagon a
utiliser ces résultats dans la seconde partie. Pour plus de simplicité,
les développements limités seront calculés pour w;; (x) = o} (i,j = 1, ..., 4)
et on supprimera l'indice inférieur.

EquaTtions DE KILLING :

/ L4
\ %Q“_F;"z% = r x ¥
53 T SO (PR z.
) X -
ig“ = Fé = a—x—l - 0 x! [ ] [ ] L]

On vérifie que ce systéme (2) correspondant & @ est formellement
intégrable mais non involutif. Le premier prolongement p, (X) introduit
L EL‘
dz/ dx*
ordre, formellement intégrable et involutif.

les équations = 0 et permet de considérer un systéme du second

Un calcul simple mais fastidieux conduit aux 20 composantes de la
courbure linéarisée, correspondant & @, :

l Fi = Q0| — 2 912,12 4+ Qypyy = O|lzt 22 e @

Un autre calcul analogue permet de déterminer les 20 identités de
Bianchi linéarisées, correspondant & @, :

..............................

!
|
A
|
€
A
l
o
8
&Q
g,
.

VOLUME A-XvIII — 1973 — N° 4



THEORIE DES DEFORMATIONS DE STRUCTURES 349

Le lecteur obtiendra sans peine les 6 identités correspondant a @, :

i b
F$ =|FS, |~ Fi + Fi%, —F2% =0 ooz 2

Il

D I R T

(23)
F; F;,a —F;,s +Fg,2—‘Fg,1+Fg,t=0 2 T oz

Il

SECONDE PARTIE

Par analogie avec I’équation de Poisson, la recherche des équations
du champ devient équivalente a celle d’un tenseur différentiel S,;
des w;; (z) :

1° du second ordre;

20 linéaire par rapport aux dérivées secondes des w;; (z);

3¢ dont la divergence doit s’annuler.

On sait alors qu’un tel tenseur existe et qu’il est unique :
1
Sij = pij — 5 poj + Awij.

Les équations du champ sont alors :
Sij =% Tujs

en introduisant comme second membre le tenseur d’impulsion-énergie
de la matieére.

La présence de la constante cosmologique A reste assez mystérieuse.
En fait, dans la plupart des applications, on linéarise ces équations au
voisinage de «;; (¥) = n;; tout en prenant A = 0.

Ce processus, effectué pour les besoins de la cause physique, n’a
autrement aucune signification dans le contexte tensoriel.

Remarque. — S’il n’y as pas de second membre (T,; = 0), alors

_2n
P =n—2

Nous allons montrer que les conditions ci-dessus sont caractéristiques
d’'un systeme structuré (S).

A.

Les équations du champ sont alors obtenues directement sous la

forme linéarisée :
51 I:“o = Mu

avec la condition de compatibilité :

S5, M, =0.
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11 nous suffit pour cela, d’aprés la théorie générale, de montrer
que (S), c’est-a-dire (S;; = 0), est un systéme e.d.p. formellement
intégrable et involutif. On sait qu’il suffit de vérifier cette propriété
sur §, pour un choix particulier des w,; () satisfaisant & (I). En parti-
culier, on prendra w;; (z) = 0, imposant A = 0.

Puisque le systéme (S) est équivalent au systéme [p; =g 2 5 Aw; ,-],
le systéme (S, F, = 0) est donc équivalent au systeme (R,- ;= 0), ou
1
encore au systéme sous forme résolue :

sto—Fi =M= |Quul|+...=0|2t 22 = =

............................................

‘FZ+F;’+F}EM§ = Qg |+...=0 |2 2* 2 e

M= | Mo, | = M, ML+ Mi M, —ME, =0,

[ M =M, | =M, 4+ M+ M — 0.

avec
Fi;°* — F," — Fi = Mi.
Le systéme structuré (S) doit donc étre conséquence de (I). On en
déduit :
\ ___(n—l)(n—2)c
: ¢

La constante cosmologique A s’introduit donc naturellement dans les
calculs et traduit seulement la commutativité du diagramme :

®
éb,‘ = c@q_ F 95; F,

T
l l@

[e] o

Nous savons passer, en oubliant @, d’une suite physique P (®), a
sa suite tronquée P (), qui est aussi une autre suite physique.

ProBLEME. — Supposons donnée une suite physique; est-il possible de
linsérer dans une autre suite physique, plus longue ?
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Comme nous ne savons pas répondre en général, nous allons essayer
de restreindre le probléme.

Ainsi, lorsqu’on se donne un systéme automorphe (A), de pseudo-
groupe I', on peut déterminer U — X, puis (&) suivi de (I), et on sait
que (S), en tant que sous-systéme de (I), est un systéme structuré.

Un tel processus généralise la contraction utilisée en calcul tensoriel
pour obtenir les 10 équations d’Einstein dans le vide, a partir des
20 conditions de courbure constante. Il sera aussi appelé contraction,
bien que le point de vue considéré soit trés différent.

ProBLEME. — A chaque systéme automorphe correspond un systéme
structuré; la réciproque est-elle vraie ?

ExEmMPLE. — Est-il possible de déterminer la solution la plus générale
des équations d’Einstein dans le vide, en utilisant seulement certaines
fonctions des ' et leurs dérivées a différents ordres ?

En conclusion, il semble que la matiére apparaisse dans une suite
physique au niveau F, (comme les constantes de structure), alors que
le champ, introduit par les o (xr) de la structure, apparait, linéarisé,
au niveau F,, le premier fibré E jouant le rdle d’un potentiel.

Nous pensons qu’il y a plus qu’une simple analogie entre les méthodes
présentées dans ce travail et celles des théories unitaires. En particulier,
il faut toujours passer par des équations finies, que I'on contracte en
un systéme structuré, sans savoir s’il traduit les conditions de compa-
tibilités d’un certain systéme automorphe.

EXEMPLE 1V : STRUGTURE ANALYTIQUE COMPLEXE

Equations finies spéciales (Cauchy-Riemann) :

oy dy*
bt AN S
@ dxv  dxY _ 1 9
5 _ =nm =m s e =n.
ay* oy ¢ T + m=n
bt AN AN
ox ox

Equations infinitésimales spéciales :

\ i)éi - ()_af\, :O’
) ) | oxY ox
g | | om
[ 5|+ 5 =0
P (0) 0 -0 ~T2FRZ 23R, . o
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Remarque. — Suite de Dolbeaut linéaire en coordonnées réelles avec
. . (m)!
dimF,_, = 2m(m Y
Equations finies générales (forme de Lie) :
.\ Oyt oxt ; D sk o
© bW gr =@, ave wi@of@)=— 3

Equations infinitésimales générales (2 m?) :

ony; (x)

ox 0.

i 0 dal m dél r
(2) S?j:wg(x)d—x—/.—wj (x)(}F-i"ﬁ

Conditions de compatibilité (premiére espéce seulement, torsion nulle) :

o o (x)<dw§. @ ool (x)> g (x)<aw§. @ 9o (:v)> o

ox* ox” ox/ ox”
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