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Causality and local analyticity :
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B. P. no 2, 91190 Gif-sur-Yvette

Ann. Inst. Henri Poincaré

Vol. XVIII, no 2, 1973,

Section A :

Physique théorique.

ABSTRACT. - In many physical schemes, the fundamental link between
causality and analyticity is the well-known Laplace transform theorem
which states the equivalence between the support properties of a distri-
bution and the corresponding analyticity properties of its Fourier-

Laplace transform in certain complex domains, called " tubes ", which
are invariant under real lranslation.

It turns out, however, that in a number of important physical situa-
tions, one is concerned with analyticity properties in more general
domains and, on the other hand, the expression of causality can take
more refined forms.

In this paper, we present a generalization of the Laplace transform
theorem which uses a non-linear Fourier transform and which exhibits
the equivalence between local analyticity properties and the corres-

ponding " essential-support 
" 

properties of the transformed functions.
A certain class of complex domains which we call ~~ local tubes " is

especially suited to the formulation of this theorem. Using these tools,
we also give a new and simple approach to the " edge-of-the-wedge 

"

theorem. This approach allows to solve a more general problem of

(*) Invited paper at the Goteborg, Symposium on Mathematical Problems in
Particle Physics (June 1971) and at the Marseille Meeting on Renormalization Theory
(June 1971).
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148 J. BROS AND D. IAGOLNITZER

boundary values of analytic functions. (We shall call this result the
generalized " edge-of-the-wedge 

" 

theorem.)
Further papers will be devoted to the physical applications of these

various mathematical results, in particular, to quantum field theory
and to S-matrix theory.

NOTE

The mathematical study given in this paper will be completed and
developed in a coming paper which includes the collaboration of
R. Stora [1].
Some of the basic mathematical ideas which are at the origin of the

generalized Laplace transform theorem have been inspired by a previous
work by H. P. Stapp and one of the present authors (D. I.) ]2], where
applications to S-matrix theory have already been given. The use of
a generalized Fourier transform to describe local analyticity there origi-
nated in the physical necessity of considering sequences of gaussian
type wave packets with widths shrinking under space-time dilation.
This physical necessity was first emphasized by M. Froissart and
R. Omnes [3].
The mathematical part of this work which concerns the edge-of-the-

wedge properties was on the other hand made possible by a previous
maturation of this problem which was the result of several years of
collaboration between various physicists and mathematicians such as
H. Epstein, V. Glaser, J. Lascoux, B. Malgrange, A. Martineau, R. Stora,
M. Zemer and one of the present authors (J. B.).

In particular, J. Lascoux and B. Malgrange played a fundamental
role in showing how the edge-of-the-wedge problems were connected
with the theory of hyperfunctions by Sato [4], thus leading to a deeper
and more general insight of these problems.
On the other hand, a version of the " generalized edge-of-the-wedge

theorem " has already been proved in certain special cases by H. Epstein
and V. Glaser [5] and A. Martineau has proposed a general proof [6}
which uses a completely different method from ours. (We will not

try here to study the link between these two methods.)

INTRODUCTION

In the fifteen last years the role played by analyticity properties in
elementary particle physics has so much increased that analyticity has
become a sort of dynamical principle in itself [7], while its links with
traditional physical ideas such as causality had not yet been fully
understood.

VOLUME A-XVIII - 1973 2014 ? 2



149CAUSALITY AND LOCAL ANALYTICITY : MATHEMATICAL STUDY

In some problems of classical physics, the link between causality and
analyticity was clearly exhibited through the well-known Laplace trans-
form theorem, using the fact that the causal character of a physical
quantity is then generally expressed as a certain support property in
space time.

As a simple example, consider a one-dimensional kernel K (t - t’)
where t and t’ are time variables and which transforms an " input "

wave signal cp (t’) into an " output " signal 03C8 (i) = K (i - t’) cp (I’) dt’;

K is causal if " there is not output before input " which is equivalent
to saying that K (i) vanishes for t  0.

The Fourier transform variable v = 03C9 203C0 of the time variable t is

interpreted as a frequency, and through the above mentioned Laplace
transform theorem, the causal character of K (t) is equivalent to the

fact that its frequency spectrum K == ~ ~-)-ao K (t) dt is the boundary

value of a function which is analytic for complexe values of w in the
upper half plane (1m w &#x3E; 0). In classical optics, a very similar situa-
tion occurs in the description of the scattering of light by atoms [8]
where, due to the propagation of the light wave along the x-axis, the

variable t has to be replaced by t - x; the analyticity of the kernel K (w)
is then the basis, through the use of a Cauchy integral, of the Kramers-
Kronig " dispersion relation ". (This is the context in which this

expression appears historically for the first time.)

We notice moreover that if a condition of " short range relaxation "
on the above kernel K (t), such as K (t)  C for t &#x3E; 0, is added
to the expression of causality, then the kernel K (m) can be analytically
continued across the real region = 0, until the value 1m w = a.

In quantum physics, and in particular in the theory of elementary

particles, the frequency v and the wave vector 1~ are respectively iden-
tified (up to the Planck constant h) with the energy po (1) and the
momentum p of a particle, and the analogue of the kernel K (m) 8 (~ 2014 M’)
[which is the Fourier transform of K (t - t’) with respect to i and t’]
is now the set of " scattering kernels " Sm, n-m ..., pm; ... , pn)

(1) In all the following we take the usual choice of units in which

% = J ,.2014 TT: == 1 so that po is now identical with the variable w = 2 1tV.
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150 J. BROS AND D. IAGOLNITZER

where the four-momenta pi of the incoming (1 ~ i ~ m) and outgoing
(rrt + 1 i n) particles are restricted to the " mass shell" manifold:

na n

pio = Wi = + mi Y/2 and satisfy the law of conservation 03A3pi = 03A3 p j.
i-1 j-lll+1

(One has in fact more precisely

In the framework of general quantum field theory, the analyticity
properties of the kernels n-,rz have also been investigated, in particular
those of the 8~2 scattering amplitudes [9] and some of these properties
have again the form of " dispersion relations ". In this derivation,
analyticity still originates in taking into account certain support pro-
perties through the (several variable) Laplace transform theorem; in
fact the microcausality of the theory is expressed by introducing certain
Green’s functions of the fields with a " retarded " or " advanced " propa-
gation character which amounts to localization of the space-time variables
in (future or past) light cones. However a new pliysical input also
plays an important role in the development of this program, namely
the principle of positive total energy put in a relativistic form in the
so called " spectral condition ", and the exploitation of this condition
together with causality leads to very intricate problems of analytic
completion.

So the analyticity properties of the kernels S",, n_ "t and the complex
domains where they are defined are still related with causal properties
in space-time but this relation is there much more sophisticated than
in the above mentioned problems and has not yet been fully studied (2).
The philosophy of this paper is twofold :
On the mathematical side we present a method which allows to solve

a certain class of problems of analytic completion and which will lead
to some applications in the program of Quantum Field Theory that we
have just described above.

(2) This accounts for the fact that in the theory of elementary particles many
physicists [7] have preferred to set " maximal " analyticity properties, such as the
" Mandelstam representation 

" 

as a working assumption. This can be considered

as a new and attractive approach to physical intuition but we emphasize that it is
not true today to state that this point of view is equivalent with an intuition based
on space time causality and quantum relativistic requirements.

VOLUME A-XVIII - 1973 20142014 ? 2



151CAUSALITY AND LOCAL ANALYTICITY : MATHEMATICAL STUDY

On the other hand this method should allow to interpret a large class
of analyticity properties of the n-m kernels or of the Green’s functions.

of field theory in terms of " causality " properties in space-time where
we now use the word " causality " in a much broader sense than above,
since it should include the notions of short range forces, of resonance,.
the role of probability conservation expressed through unitarity, etc.

The latter point of view was expressed for the first time (3) by
R. Omnes [3] who treated the problem of the equivalence between
" momentum-transfer analyticity " and a " short-range-force hypothesis ,,.
in a pure S-matrix framework.
More general results of this kind were then obtained by H. P. Stapp

and one of the present authors (D. I) [2] and led to the present mathe-
matical study. However the exact shapes of the domains of analy-
ticity (surrounding the real physical regions) were not studied precisely
there, and certain notions such as the distinction between analyticity
in the so-called " physical sheet " and analytic continuation into other
sheets (across certain real regions) might still deserve further and more
detailed investigations in terms of the above concepts formulated in

space-time (~).
In the present paper, we try to give a general mathematical basis

to the study of the links between analyticity and causality (in a broad
sense). In various physical schemes these general results will allow to
characterize in terms of " essential support " (’’) properties the fact.

that certain fundamental kernels are analytic in bounded complex
domains which contain suitable real regions Q (but not the whole real
region). We shall call this kind of property " local analyticity ".

In fact this important feature appears conjointly in general quantum
field theory and in pure S-matrix theory (the real regions Q are then
subsets of the so called " physical regions "); and although the first

theory is working with " off mass shell " quantities (the Green’s functions)
while the other one only uses the " on shell " scattering amplitudes,
the meaning of local analyticity in both theories can now hopefully
be understood in a unified way as various applications of the same mathe-
matical theorem. This theorem which is a generalization of the Laplace
transform theorem establishes equivalence between the fact that a

function f (p) is locally analytic and a property of exponential decrease
for a suitable quantity which is a generalized non linear Fourier trans-

(3) In this connection we must also quote the pioneer work by G. Wanders [10].
(4) Investigations of this kind will extend the simple result mentioned before on

the analytic continuation of the kernel K (w) across the whole real region, but the
problems become here much more intricate, because in particular of the unavoidable
occurence of branch points (" threshold singularities ") on the real.

(~) This term will be made precise in the following.
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152 J. BROS AND D. IAGOLNITZER

form of f (p). Compared with the Laplace transform theorem which
has been mentioned above, this generalization presents two important
features :

a. The introduction of a non linear Fourier transform is necessary
to describe analyticity in local domains, while the ordinary Fourier
transform can only be used for a too restrictive class of domains : those
which are invariant by real translation (i. e. " tubes ").

b. The exponential fall-off properties of the transformed quantities
outside a suitable " essential support 

" 

generalize the strict support
properties, and will be physically interpreted as a refined expression of
causality. (This feature can already occur mathematically with the
ordinary Fourier transform, but it becomes crucial in the description
of local analyticity.)

The physical applications of these results will be given in further
papers. In particular one of the theorems which is proved here (a gene-
ralized version of the " edge-of-the-wedge 

" 

theorem) will be a useful
tool in the program of field theory (see note added in proof).

In order to describe the contents of this paper, let us first of all fix
some notations. We consider two n-dimensional spaces (x-space and
~-space) with the Fourier transformation defined by

wh ere

wand

"The variables x will always be taken real while ~ will also be complexified ;
when it is complex, it is noted p = 03BE + i ~ with

and

In n-space we shall often use the polar coordinates n = p&#x26;) where p = I
and is a point on the (n - 1)-dimensional unit sphere.

The domains which generalize in several complex variables the upper
half-plane Yll = Im pi &#x3E; 0, or strips a  vh are called " tubes " [11].
In the space Cn of n complex variables p~ = ~ (1 L i L n), a

VOLUME A-XVIII - 1973 2014 ? 2



153CAUSALITY AND LOCAL ANALYTICITY : MATHEMATICAL STUDY

tube Ta is defined as the set of all points p such that ~ = Im p belongs
to a given domain (6) B ; B is a domain in the n-real dimensional ~-space
and is called the basis of the tube TB. (The tube TB thus defined is

clearly invariant by real translations, since there is no restriction on

the values of ~ = Re p.) We shall also use the closures of B and Ts

which will be denoted respectively B and Tu (more generally D will
denote the closure of the open set D).

In section 1, we recall the usual Laplace transform theorem in its

simplest form : equivalence between support properties of a function {(x)
in a convex cone and analyticity of its Laplace transform f (~ + i n)
in a suitable tube with conical basis.

Section 2 will describe the extension (well-known for mathemati-

cians) of this theorem to the case of tubes with more general (possibly
bounded) bases B; there the support property in x-space is replaced
by a condition of exponential decrease outside a suitable domain B
which will be called " essential support ".

A general class of bounded complex domains in p-space will be intro-
duced in section 3; they will be called " local tubes 

" and defined with

help of a " localizing " analytic function + (p). Ordinary tubes are
reobtained as a limiting case (4Y (p) - 0).

In section 4 we define a generalized Fourier transform 5’ ~ in which
the linear exponent - i ~ . x of formula (1) is replaced by a non linear
function of ~, involving the function ~ of the class introduced in section 3.

In section 5, the Parseval and inversion formulae of the Fourier trans-
f ormation are generalized to the case of the transformation 5’ }&#x3E;.

This allows to prove in section 6 a generalized Laplace-transform
theorem which states the equivalence between analyticity of functions
in a local tube with localizing function ~, and essential support pro-
perties of the J03A6 transforms.

In section 7, we show how this theorem allows to obtain a very precise
and intuitive presentation of the " edge-of-the-wedge theorem 

" and

to prove a generalized version of this theorem.

We finally wish to point out that this paper has been written as far
as possible in the language of classical mathematics in order to be acces-
sible to the physicist; in the same spirit we have voluntarily neglected
certain mathematical features or developments of our results which
we prefer to reserve for another paper [1]; the latter will be presented
more specifically to be read by mathematicians.

(6) i. e. a connected open set.

ANNALES DE L’INSTITUT HENRI POINCARE 11
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1. THE LAPLACE TRANSFORM THEOREM

FOR A TUBE WITH CONICAL BASIS

Being given a cone C with apex at the origin in n-space, we shall
associate with C a closed cone C in x-space which is the set of all points x
such that for all points n in C (fig. 1); we shall call C, the
" dual cone " of C.

It can be verified that the dual C of C, taken now in n-space, is the,
closed convex hull of C.

’Ve now recall the classical Laplace transform theorem [12] which
we first state for simplicity in the case when f (p) [and f (x)~ are infini-
tely differentiable functions which decrease rapidly Q at infinity as

well as all their derivatives (according to Schwartz’s notations [12]
we say that f and f belong to the space 

For such functions f and ~ the two following properties are equivalent :
(i) f (~) is the boundary value of a function f (~ + i analytic in a

tube Tc, where C is a convex open cone.

f (p) is moreover infinitely differentiable in the closure of Tc and has
a rapid (~) decrease at infinity in this region.

(ii) has its support in the dual cone C of C.

The proof that (ii) implies (i) is easily obtained by writing the inverse
Fourier formula :

(1) By rapid decrease at infinity we always mean that there exists for every posi-

tive integer N a bound of the form 201420142014~2014~ in real directions, or 20142014201420142014~201420142014-~
in complex directions.

VOLUME A-XVIII - 1973 2014 ? 2



155CAUSALITY AND LOCAL ANALYTICITY : MATHEMATI CAL STUDY

and investigating the convergence conditions of the right-hand side

when ~ is replaced by ~ + i r (~~.
The proof that (i) implies (ii) is obtained by replacing the integration

contour of formula (1) (i. e. the real ~-space) by the set of all ~ + i Y)
with a fixed r, taken inside the cone C (this is allowed because f is ana-
lytic in Tc).

Since ~ I can be chosen arbitrarily large, the contour can be moved
to infinity as soon This proves the vanishing of 

outside C.
In the above argument it appeared that

this is equivalent to saying that f (x) is the Fourier transform
of the function f,~ (~) = f (~ + i for all points ~ inside C (°).

This remark allows to define the correspondence between f (p) and {(x)
in the more general case when f (p) has not necessarily a limit in the
usual sense on the boundary of Tc and can in fact have an arbitrary
behaviour near this boundary.

It is useful in many physical contexts to consider situations in which
the notion of a " boundary value " in the sense of tempered dislributions
can be defined ([6], [13]).
One says that a function f (p) analytic in Tc admits a tempered distri-

bution fo as its boundary value on the real )-space if for all test func-
tions cp (03BE) in S, one has

when ~ ~ 0 inside the cone C.
It has been proved that this condition is equivalent [13] to the fact

that ~ f (p) is bounded by a fixed inverse power (with polynomially
increasing coefficients in ~) when ~ tends to zero.
More generally, we say that a function analytic in Tc (or in any domain)

is slowly increasing in this domain if f (p) is bounded by a polynomial
in p at infinity and by an inverse power of the distance to the boundary
of Tc, when p comes close to this boundary.

C~) The rapid decrease properties of f (p) at infinity inside Tc are obtained by repea-
ting the argument for all the functions (- f ( p) which are the Fourier transforms

of 
dm f (~) ’

(9) The Fourier transform can also be considered in cases vvhen fY (;) is no longer
integrable, but for instance has a polynomial increase at infinity; (x) then becomes
a tempered distribution.

ANNALES DE L’INSTITUT HENRI POINCARE
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It is then interesting for the application to quantum field theory
to quote the following version of the Laplace transform theorem in the
case when f (x) is no longer a function but a tempered distribution.
There is equivalence between the two properties :

(i) f is a tempered distribution in x-space with support C.
(ii) f (ç + is analytic and slowly increasing in the tube Tc, and

its boundary value fo on the real admits f as its Fourier transform in
the sense of tempered distributions.

2. THE LAPLACE TRANSFORM THEOREM
FOR MORE GENERAL TUBES

In the following the tube TB is always chosen such that the closure
of its basis B in ~-space contains the origin (1 0). Moreover we shall
assume for simplicity that B is " star-shaped " with respect to the origin :
we mean here that B can be described in polar coordinates == (p, w)
by an inequality p  r 

The function r (w) can have finite or infinite values and is not neces-
sarily continuous everywhere, but lower continuity is required.
When the origin lies on the boundary of B, we shall say that we have

a 
" wedge situation "; ; in this case r (~) has a certain support which

is the intersection of the unit sphere with a (connected) cone CB.
If one takes care of excluding the origin in the case of wedge situation,

the sets B that we just described are open sets.
With the basis B we associate in x-space its polar set B, defined as

the intersection of all half-spaces with equations

for all points ~ = (p, w) in B; B is a closed convex set.

Remarks :

(i) If B is a bounded set, the origin in x-space lies in the interior

of B, whereas it lies on its boundary if r can take infinite values.
An example of the latter case occurs in section 1, where the basis B

is the cone C and B is identical with the dual cone C of C.

(ii) If B is in a wedge situation [with support of r (w) in a cone Cn],
then B is unbounded and admits as an asymptotic cone the dual cone CB
of CB (see fig. 2).

The case when the closure of B does not contain the origin could be treated
in a similar way, but it is without interest in the framework of this paper.

VOLUME A-XVIII - 1973 - N° 2
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(iii) For any set B, the convex envelope B of B has the same polar
set B as B.

We now introduce the notion of " essential support " in x-space :

we shall say that a function /"(.r) admits B as its essential support if it
satisfies for every x oulside B an exponential bound of the type :

(3) 
for every s &#x3E; 0.

In this inequality, j3 (x) is a positive and possibly infinite quantity
which is defined as follows : for every x, we call ~ the (unique) point

on the boundary {( of B which lies on the segment joining x to the origin ;

then we put p (x) = -L’ . .
The level surfaces of the function 03B2 (x) are clearly obtained from J

by dilation with respect to the origin and for that reason we shall also
call (f the " indicatrix of decrease " of the function f.

Remark. - If J contains the origin where it admits a tangent cone,
then ~ (x) becomes infinite when x is outside this cone, and therefore f (x)
vanishes in this region. The case considered in section 1 gives an
example of this situation.
For any tube TB with open convex basis B, the Laplace transform

theorem now displays a correspondence between the functions

f (~ + which are analytic in p-space in the tube TB (and sufficiently

Rigorous statements of equivalence of this kind can be obtained if one pres-
cribes the exact functional spaces to which the boundary values of f (; + i ~) belong
(on the various parts of the boundary of TB) and correspondingly more refined
decrease properties 

ANNALES DE L’INSTITUT HENRI POINCARE
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decreasing at infinity) and functions f (x) in x-space which have B as
their essential support.
As it has been described in section 1, the correspondence between f

and f is still defined by saying that f (x) is the Fourier transform
of the function f, (¿) o f (I -~- i of) where this is true now for all points Yj
in B.

The idea of the proof is then the following : starting from the analy-
ticity of f in the relevant exponential bounds (3) on f (x) are obtained
by optimizing on all in B the boundedness condition for the product
f (x) (The case of section 1 is reobtained by this procedure);
here again the converse is proved by investigating the convergence
condition of the integral ff (x) dx.

Remark. - The Laplace transform theorem gives a direct proof of
the following well-known lube theorem [11] : any function f which is ana-
lytic in a tube Tn with arbitrary basis B (and sufficiently regular at

infinity) can be analytically continued in the tube T whose basis B is
the convex envelope of B. In fact the argument which allows to prove
that the essential support B of f is the polar set of B still holds when B
is not convex; since B and B have the same polar set, any function f

analytic in Tn corresponds to an [(x) with essential support  ~ (),
and by the converse of the above theorem f is also analytic in T~.

3. LOCAL TUBES

In sections 1 and 2, we have described classes of functions which are

analytic in tubes; we shall now introduce more general complex domains
which include tubes as a limit case; we will call them 

" local tubes ".

A local tube will be defined by means of two elements.

(i) A bounded domain B in an n-dimensional real space which we
assume for simplicity to be described as in section 2 by an inequality
p  r (w).

Here again B will be called the basis of the local tube.

(ii) An analytic function ~ (p) with the following properties :
a. (I) (p) === j) (p) for any p in the domain of 6b.

b. The set of all real points ¿ which satisfy 0 (¿)  1 is an open
bounded set Q whose closure is compact inside the analyticity domain
of 03A6 (in complex p-space).

c. The origin ; = 0 belongs to Q and is a critical point for

~ (B7 (P (0) = 0); moreover assume for simplicity that 4J has no

VOLUME A-XVIII - 1973 - NO 2
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other critical point (12) inside !2 so that the set of level surfaces

03A6 (n = c (0 L c L 1) is topologically equivalent to the set of nested

spheres with equations 03A3 03BE2i = c; in particular 03A6 (03BE) = 0 implies ç = 0.

The simplest example of a function 03A6 which we shall sometimes refer

to is in fact the function 03A6 (03BE) = 03BE2 = 03A3 )/.
Let us now consider the set ~ of points p == ~ (with f == I 1] I w)

in the domain of analyticity of ~ such that :

(4) b ! 1 + ~) (Pe~ + ~) - 1)  0.

We notice that the open set Q always belong to 6 [Ion = 0 implies
6b (~)  1 since r (w) ~ 0].

If the connected component of 6 which contains Q is bounded and
has a compact closure inside the domain of D, we define the local tube 

as the interior of this component.
A more technical restriction on the domains which we consider

will be imposed in the last part of this section.
In the unbounded case one can also derive results which are similar

to those described below, but since we are only concerned here with

possible applications to local problems, we will restrict ourselves to the
case of bounded local tubes.

The only real points which belong to the closure of are those

of Q and that is why we say that ~ is a 
" localizing function " in the

open set Q ; Q plays the same role for T,,p as the whole real ~-space
for a tube Tn. However, we note that B and Q are not sufficient to

specify the domain T B, I&#x3E; since a large family of functions 03A6 are localizing
in the same open set Q.

Remark. - By putting 03A6 o 0 in equation (4), one reobtains the

equation of the tube TB of section 2. In fact if ~ (D (~ 0) is analytic
on the whole real ~-space, then the family of local tubes with ~

real, satisfies the inclusion property c T B, À’ I&#x3E; for all ), &#x3E; i~’, and
when ~ tends to zero, tends to the tube TB.
As in section 2, we will consider two cases according to whether B

contains the origin or only admits it as a boundary point.
In the former case, Q is contained in whereas in the latter case

it only lies on its boundary; we thus have again a 
" wedge situation ",

is contained in the tube whose basis is the cone CB (see section 2).

(12) More general situations could also be considered but would not bring essen-

tially new features.
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The shape of the sets ~ and T B,.p in an arbitrary imaginary direc-
tion () is typically illustrated by taking the following one-dimensional
example where 03A6 (p) = p2 ; j r (03C9) } is a set of two numbers r+, r-, Q is
the interval - 1  ç  1 and the set 5 is defined by the equations :

The situation in the upper half-plane is represented on figure 3; two
cases occur :

(i) The region 6 is connected but unbounded for r+ &#x3E; ’.
(ii) for r+  ~ the re g ion ~ is disconnected and only corresponds

to its lower part.
In order to generalize this intuitive picture to the case of an arbi-

trary localizing function ~, we need to introduce the following notions.
Being given a localizing function one can associate with every
point (p, ~) in Rn (13), the n real-dimensional manifold rP,,, in C~z which
is defined by the equations :

For any fixed direction w, and any sufficiently small value of ? ~ 0,
one shows that this manifold contains a connected bounded compo-
nent which has the same boundary as Q ; we shall call this component
the cycle {1’r) All the cycles r p, w (with 03C9 fixed) are contained in
the (n + 1) dimensional manifold p == ~.1 + ~, where h is a complex
variable and 03BE| denotes a set of (n - 1 ) real variables in the hyperplane
orthogonal to M; now we shall say that a cycle is admissible if for
any fixed value of ~1, its section in the ).-plane has no critical point
and can be obtained through a continuous distortion of cycles 
with 0 ~ p’ ~ p (starting from the section of Q on the real axis, when p’
starts from 0).
One can show that a cycle is admissible provided that at all the

points of and of all cycles with the derivatives

M.v~~(~~) and do not vanish simultaneously ; this
is clearly fulfilled for p small enough, but for any given there is a
critical value p = r~~ such that the cycle ceases to be admissible
at this value.

(13) p, m are the polar coordinates of this point.
(14) In the sense of " relative cycle modulo the boundary of Q ".
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Using the property a of C, one can easily show that :

and what we have to keep in mind is that on all admissible cycles r pw
 r03A6 (w» the complex valued vector (6) does not vanish; 011J

each limit cycle p = (w) it vanishes at least once.

We shall define the admissible set B~ associated with ., as the set of
all points p, m in R" such that the cycle be admissible; B~ obviously
contains the origin and is given in polar coordinates by the formula
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The introduction of the cycles (t) allows the following alternative
definition for a " local tube " T ll, P : is the union of the cycles 
associated with all the points (p, w) in the basis B.

In the following, we shall always impose that the basis B has a compact
closure inside the admissible set Bcp; this means that Tn,  is a union

of cycles r pw which are all admissible and implies that the modulus of
the complex vector (6) has a strictly positive lower bound in the tube 
This property will reveal crucial for the argument given in section 6.

4. A CLASS

OF NON LINEAR FOURIER TRANSFORMATIONS F~

Being given an analytic function 03A6 with the properties described
in section 3, we shall associate with every distribution f (~~ suitably
chosen a generalized Fourier transform F (x, xo) in the n + 1 dimensional
real space of the variables x = ..., xn) and xo by the formula :

To be more precise, we consider a bounded connected closed set  (15)
which contains the closure of Q in its interior (Q c c f) and such that
the f unction ~ is defined and analytic at all points of f.
We then consider the class of distributions f(() which have their

support in it, and denote by E.. the class of their Fourier transforms :

r (x) is an entire function which is polynomially bounded on real x-space.
Then for any fixed value of xo, F (x, xo) is the Fourier transform of

f()) and therefore also belongs to Eô.
An alternative way of considering the transformation is obtained

by imbedding the real ~-space into the n + 1-real dimensional space
of the variables (~==~, ..., ~n; z) and introducing the closed piece
of analytic manifold J11 which is the set of all points (~, z) such that
z = 4&#x3E; (~) with ( in f.
We then see that F03A6 is the ordinary n + 1 dimensional Fourier-

Laplace transformation for distributions with support .J1t and which

(15) Be careful that here the notation A does not mean the convex closure.
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have the forin f (¿) ~~ (z 2014 ~ (~)) in a neighborhood of :

Let us now introduce the (possibly infinite-order) differential operator
c. i ~ defined for every function g (x) in the class by

Since ~ ~-‘) is differentiable at all points of f2, is again a distri-

bution with support 12 and W 9 (x) is therefore a well-defined

function in the class E..
With this definition, we immediately see on formula (7) or (8) that

F (x, xU) is a solution of the equation

We emphasize that the operator 2014- + 4J i d will only be here’ ~ (/xu x "

considered as acting on differentiable functions of x and xo which (for any
value of xo) belong to the class Eû (in the variables x) ; this operator is
thus canonically associated with the set :J11 and therefore denoted by 

If 03A6 is a polynomial of degree m, (10) reduces to an ordinary partial
differential equation of order m (with constant coefficients); in the

typical case where 03A6 == ¿2, (10) is the heat equation. In the general
c.ase, the essential properties of this parabolic equation still hold true.

In particular, the solution F (x, xo) with Cauchy data F (x, o) = r (x)
is uniquely determined by formula (7).

5. THE CLOSED DIFFERENTIAL FORM W (F, G)
AND THE GENERAL PARSEVAL

AND INVERSION FORMULAE FOR FI&#x3E;

Let us consider for a moment the case when f (~) is a (differentiable)
function. Then f can be recovered from its transform F (x, xo) by using
the inverse Fourier formula :
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where the right hand side integral can be performed equivalently on
any hyperplane xo = const.

In the next section we will need an extension of this inversion formula
in which the integration will be performed on a more general hyper-
surface 1, of the (r, xo)-space and which will be valid provided that
F (x, xo) has special decrease properties.
We shall now present this type of extension in its natural framework

which is the Parseval formula.

In fact, the inverse Fourier formula can be considered as a special
case of the Parseval formula :

since the latter is valid for any couple ( f, g) in duality : by taking

g (0 = 0 (~ - ~o) = i. e. g x - 1 e-i~~ ~ one reobtains the

inverse Fourier formula. 
(2 7r)2

The extension that we give was inspired by a result which concerns
the Klein-Gordon equation and is well-known in relativistic quantum
physics. We mean the following form of Parseval formula :

for functions f (p) and g (p) in duality.
In this formula, the first integral represents the (Lorentz invariant)

scalar product on the mass shell hyperboloid Hm and F (x), G (x) are
the associated solutions of the Klein-Gordon equation.

In the third term, the integrand is a closed differential form VV and
in view of Stokes theorem its integral on the (space-like) hyper-
surface r is independent of 03A3 (for suitable decrease properties of F
and G at infinity).

(16) / W = / dW where JQ is the boundary of Q.
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In the present case, we similarly consider a couple of functions f (x),
g (x) in Eð which are in duality and for which we have the usual Parseval
formula (12).

Let F (x, xo) and G (x, xo) be the solutions of the equation (10) with
respective Cauchy data f (x), g (x) on the hyperplane xo = 0. Then

we are able to construct a differential form W (F, G) of degree n in the

I (n + 1)-dimensional] (x, x0)-space such that :

(i) W (F, G) is closed (dW = 0).
(ii) The restriction of W (F, G) to any hyperplane xo = const. is of

the form :

[which reduces to r (x) (g) (x) d1x  ...  dxn when xo = 0].
In view of Stokes theorem, we therefore obtain that, for couples of

solutions (F, G) having suitable decrease properties at infinity, the

following generalized form of Parseval formula [analogous to (13)] holds :

for a certain class of admissible hypersurfaces ~.
If we take for f a regular function f (~) and for g (~) the measure 0;,

then G is equal to and the formula (14) gives an inversion
of formula (7) under the following general form

Let us now give the expression of the differential form W (F, G);
we first introduce n differentiable functions Pk (~, ~’) of 2 n variables

by the identity

The existence of such functions is ensured [14] if ~ is differentiable.
Moreover if ~ is analytic in a natural domain A, Pk is analytic in Ax A;
[for A we can take here the domain of all points p = ~ + such that
Re tit (p)  1 + s].
We note that the functions pk (~, ~’) are good multipliers for the distri-

butions f (j g (03BE’) whose support lies in f   (since f is contained in A).
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Therefore it is meaningful to define the action of an operator noted
03C1k(i~ ~x, - i~ ~x’) on the product F (x, xo) G (x’, - x’ by the formula

We now put

where the notation dXk indicates that this factor is omitted.
In order to verify that W is closed, we just compute

To show that the coefficient of A dxn vanishes we just note
that it is the generalized F03A6 X 9"’ I&#x3E; transform (restricted at x = x’,
Xo = of

which is equal to zero in view of equation (16).
Writing now formula (18) in the case when

we obtain :
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where we have put

For k = 0 we give a meaning to this equation by putting po (~ ~’) = - t 
.

in such a way that by formula (7) we have Fo (x, xu, E) == 2014 ~ F (x, xo).
We notice that formula (20) defines Fk not only for ~’ real, but for

any p’ = 03BE’ + i -fi’ in the complex domain A where 03A6 and Pk are analytic.
Therefore Fk is also an analytic function of p’ in A for all values of x
and xo.

By putting the expression (19) into formula (15) we obtain for appro-
priate classes of hypersurfaces I the general inversion formulae for .~~ a~ :

.Remark :

(i) When ~ is a polynomial, the kernels Fk can be chosen to be poly-
nomials in ~, whose coefficients are finite combinations of derivatives

of F (x, xo) [as in our pedagogical example (13)].
(ii) The construction of the differential form W (F, G) depends on

the set of functions Pk which is not un iquely determined (17); in fact W (F, G)
is defined up to an exact differential form (whose integral on 03A3 is equal
to zero). This point will be developed in [1].

6. THE GENERALIZED LAPLACE-TRANSFORM THEOREM

FOR LOCAL TUBES

We shall now use the transformation of section 4 to represent
the functions which are analytic in a local tube by means of solu-
tions F (x, xo) of the equation (10) which have exponential decrease
properties outside a certain essential support.

In section 2, we had introduced in x-space the polar set B of B; B
was the essential support of every function whose Laplace transform
was analytic in the tube TB with basis B. Similarly we shall now

associate with the basis B of a local tube a set Ss in (x, xo)-space
which will again play the role of " essential support " : SB is the convex

(17) We are indebted to Dr. Bruning who pointed out this fact to one of us.
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~cone with apex at the origin in (x, xo)-space whose basis is the set of
points = 1; for convenience this basis will still be denoted B.
An example of a set Sn is exhibited on figure 4 with the same set B

as in figure 2.

Finally, it will be useful to introduce also polar coordinates in (x, xo)
.space; we shall put

where ’r - r [(x, xo)] = vx2 + xg and v = (u, uo) is a point on the
.unit sphere in (x, xo) space ; we shall call " indicatrix associated with B "

the intersection of the boundary aSn of SB with this unit sphere and
.we shall denote it Ju. For every point v = (u, uo) on 3n we note that
there exists a point p, w on the boundary of B (i. e. p = r (w) such that
.Uo = - r (w) u . w; and since B has been taken bounded, we have (for all
points of the inequality

with fmax = sup~,; r (w).
Given an analytic function .. which is a localizing function in a real

open set Q in ~-space, we now choose once for all a closed bounded

set 1~ as in section 4 (Q c C 9).
We will here consider functions f (~) which are infinitely differentiable

.and have their supports in 9. (We shall say that f belongs to the
:space ~~.) With such a function the transformation associates a
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function F (x, xo) [see formula (7)] which is solution of equation (10) :

where we recall that DJ1t is completely determined by the set

~:~==~(~ ~12. Moreover one can easily check that F (x, xo)
is bounded in the whole half-space xo ~ 0, and that for every fixed
xo ~ 0 it is rapidly decreasing in I x I.
We shall now consider the class of functions f in 6,) ô whose restriction

to the open set Q is the boundary value of a function which is analytic
in a local tube for simplicity we still denote by f (~ + i ~;) this
analytic function [at the points ~ of Q, /’(~) is analytic in the only case
when the basis B contains the origin; if not, we are in a wedge situation
and y(~) is only the boundary value of f (~ + i 
We shall now prove that the F03A6-transform of any function f in this

class admits Sn as its essential support and conversely.
More precisely one can state the following equivalence theorem which

we present with a certain specification of regularity conditions on the
boundary of :

THEOREM. - There is equivalence between the two following properties :
(i) The function f (;) belongs to and its restriction to Q is the boundary

value o f a function f (~ + which is analytic in a local tube 
with convex basis B ; moreover f (~ + i ~) exlends to an in finilely differen-
tiable function defined on the whole closure o f (ï B, p is compact

(ii) The ~~~ ~-trans form F (x, xo) belongs to ~~ for every fixed value of x~,,
and all the associated kernels F; (x, (0 L k L n) defined by equa-
tion (20) satisfy the following bounds

at all points (x, xo) o f the half-space xo ~ 0 which lie outside SB (or on its
boundary) and for all values of p in 0.

These bounds hold for all positive integers N and the constants CN are
independent o f x, xo and p when these variables vary in the above domains.

a. Proof that (i) implies (ii). - As a first step we shall establish the

maj orization formula (23) without the rapid decrease factor -1 1 N"
To this purpose, we rewrite the integral formula (20) (with I’ replaced

(18) We recall that r ~ r [(x, xo)] = VX2 + xo.
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by P’ = ~ + i v/) under the following form

with

(here GQ is the complementary set of Q in real ~-space).
Since 03A6 (03BE) &#x3E; 1 outside Q and + is regular in the support 12 of f,

the integral (26) is trivially bounded in modulus by C" in the whole

half space x~ ~ 0; the constant C" is given by

where is the volume of the integration set 

We now concentrate on the integral (25); in order to derive an expo-
nential bound e-xo for this quantity, it is crucial to use the analyticity
of f (p) [and of Pk (p, p’)] in the domain In fact this will allow

to make a suitable distortion of the integration contour Q inside 
before majorizing the integrand of formula (25).

Here we shall use the fact that is a union of admissible cycles 
and the definition of an admissible cycle given at the end of section 3.

As we have done there, we restrict ourselves to the manifold p = ~1 + ~
and use the analyticity of f (p) in the complex variable À for any fixed
value of Çl. Then the definition of admissible cycles allows us to

distort ~ into any cycle contained in and to write, for any

point (p, w) in B :

By using the formulae (5) it is easy to see that for any point p in r~ ,,, :
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Therefore in the whole closed half-space of (x, xu) space with
equation

we obtain the majorization

where we have put

and V is the upper bound of the volumes of all cycles in 1"n, (p.
But in view of the definitions of SB and of the polar B of B (see section 3)

we notice that the union of the half spaces associated with all

points (p, w) in B covers precisely the closure of the complementary set
of SB in (x, xo) space.

Putting together the majorizations for F~. ~ I and I F I we obtain

where Co = 20142014~sup(CB C"), this bound being valid in the closure

(27~
of the complementary set of SB inside the half space xo ~ 0; and for
all values of p’ in in A.

In order to derive the majorization formulae (23) for all successive
values of the integer N we shall integrate the expression of F/. (x, ro, p)
by part and use the properties of analyticity (and regularity at the

boundary) of the successive derivatives of f (p) [and of ... (p)] in 
Let us start with the following expression of Fk :

where we have put together the expressions (26) and (27) of F~ and F~
respectively being any admissible cycle).

Choosing an arbitrary direction mi, we can always rewrite (32) as
follows
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and provided that the denominator of the integrand does not vanish
on the integration contour, partial integration is allowed and yields

We shall below divide the set of points (u, Uo ~ 0) of the unit sphere
which lie outside SB (or on its boundary) into two parts and show that
in each of them W J can be chosen such that the denominator

i + (~~ 1, ~’~, P (p)) uo never vanishes and has a uniform lower bound
in modulus.
The argument which led to the majorization (31) of Fk can then be

identically applied to the integral of the right hand side of (34) and
therefore will yield the bound (23) for N = 1. By an obvious recursion
over N one would obtain sirnilarly all the bounds of the formula (23).
We first consider the set of points (u, uu) which satisfy an inequality

Uu ~ ~ for a given strictly positive number s.

For any fixed point (x, xu) outside SB or on its boundary there always
exists at least one point (p, w) in B such that the point (x, xo) belongs
to the boundary of the half space defined in formula (28), i. e.

we have

so that

We choose to integrate (34) precisely on the contour 

associated with this point (p, w) and moreover we choose WI = u. Then,

in view of (35) the denominator + (WI. (p)) Uu can be written

Now we recall as it was observed at the end of section 3 that the

vector i - (p) [see (6)] certainly does not vanish on the admis-
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sible cycle t.); it obviously does not vanish either on the contour C Q
since (p) is real there.
A uniform lower bound of the modulus of (36) easily follows since

We next consider the set of points (u, 0 L Uo L 2).
The quantity ({) (p)) I~~ is then bounded in modulus by

E max (p) I independently of Wi. If s is chosen sufficiently

small, it is thus always possible to find [for every value of v = (u, uj] ]
a direction w 1 such that i w, . u + (wl . ~’~, ~~ (p)) uo does not vanish and
has a uniform lo wer bound. We take for instance coi 1 in the direction

of u.

Since u2 + u~ == 1 one obtains imme.diately :

b. Proof ihai (ii) implies (i). - Conversely we shall now show that the
bounds (23) allow to prove that f (() is the boundary value in Q of a
function f (p) which is analytic in and regular on its boundary.
[The fact that f (~) is infinitely differentiable on the real simply comes
from the rapid fall off of F (x, o).]
To this purpose we first show that as a consequence of the bounds (23)

the boundary dsn of the cone Sn is an admissible surface  in equa-
tion (21) when ~ is inside 2.
We recall that in view of Stokes’ theorem and of the fact that the

differential form W is closed, the difference between the integrals of W
on the hyperplane Xo = 0 and on the surface dSB is the limit when
R - 00 of the integral of W on the surface defined by the conditions

I - R, xo ~ 0 and (r, xo) in the complementary set of SB. An example
of such a surface is shown in figure 5 (with the cone SB of figure 4).
But in view of the bounds (23) (where z can be replaced by I x 1 == R)

the integral on this surface is bounded in modulus by the following
expression

In the integral over xo, the upper bound R rma; is a consequence of
the fact that all the points of the integration surface satisfy the bound
0 ~ Xo ~ I in view of formula (22) (see also fig. 5).
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This quantity clearly tends to zero when R - oo if N is chosen large
enough, since ~ (0 ~ 1 in Q; therefore the expression (21) of f (~) is

valid when one takes aSn for the integration surface I.
We now show that this integral defines a function which is analytic

in the local tube T B, p, infinitely differentiable on its boundary, and
coincides on Q with the function f (~). We shall still call this func-

tion f (p).

We use the polar coordinates T, v = (u, un) in (x, x~) space that we
have already introduced, and we consider f (p) as defined by the following
integral (’ 0) :

where

[here we have used the notation Fk (r, v, p’) for Fk (x (r, v), Xu (r, v), p’)].
""* 

It

(19) Which reduces to (2 1:Y~ when p is real in s~ (in view of eq. (21).
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The bound (23) (which is still valid on allows to obtain :

In order to prove the absolute convergence of the integrand in equa-
tion (38) at a given point and for a given value of v on it is

thus clearly sufficient to verify that

since N can be taken arbitrarily large.
With the given point v, let us associate the half space 03C0v defined as

the set of all points (p, w) which satisfy the inequality

Then taking the equation (5) into account we notice that the set Ctv
of points p where (40) is satisfied is exactly the union of all the mani-

folds associated with all the points (p, w) in the half space 7~

(see section 3).
The factor - n u + (Re ~ (p) - 1 ) uo stays strictly negative when p

is in the interior of ~v and can vanish on its boundary. This imme-

diately implies that Ik (v, p, p) is an analytic function of p inside 
and is continuous on its boundary and moreover that its bound is inde-

pendent of v. [The regularity of all the derivatives of Ik on the boun-

dary of would be proved in exactly the same way since these deri-
vatives have expressions which are completely similar to the

equation (37).]
According to equation (37), I (p) is an integral of the functions

1~ (v, p, p) over the points v in the indicatrix JB. Since this indicatrix

is compact and the functions Ik are uniformly bounded in v, I (p) is

regular at all points p which lie in the intersection of all the sets ~
when v varies over and it is analytic in the interior of this region.

Since the intersection of all half-spaces 03C0v is the polar of B, i. e. B (2°),
the closed local tube = U r p, w thus belongs to the intersection (’1)

of all the regions therefore we have proved that f (p) is analytic in
the local tube and regular in its closure.

(20) In view of the convexity of B.
(21) More precisely, it is a connected component of this intersection, the whole

intersection being n 
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We shall now use the theorem which we have just proved to give a
characterization of the functions f (p) which are analytic in a local
tube and regular in its closure :

For every such f (p), the boundary value of f (Y) on the real set Q
always admits extensions to the whole ~-space which are infinitely
differentiable and have their supports in S?; this is because the closed
set Q has a sufficiently regular boundary C~2).

Such an extension of f (~) will be called admissible, and in view of
the above theorem, any admissible extension of f has an F03A6-transform
F (x, xu) and associated kernels F~ (x, xo, p) whose essential support
is the cone Sn.

If we now consider two admissible extensions of f (p) we have

fi 1 (;) - f2 (j = 0 on Q and therefore their g (p-transforms and asso-

ciated kernels F~B satisfy the following bounds

(or all points x~ in the hal f space xa ~ 0.

[To show this, we apply the argument given for majorizing the expres-
sion (26).]

Conversely one shows that every solution of the equation DJ1t F = 0
which is bounded by e-x’o in the half space Xo 0 is the F03A6-transform
of a function f which vanishes in Q : to see this, one notices that for ~
in 03A9 the inverse F03A6-formula can be applied when one chooses the inte-
gration surface to be any plane xo = C &#x3E; 0; then letting C tend to infi-
nity, we see that such an integral is necessarily equal to zero.

So it is proved that to all the admissible extensions of any function f (p)
analytic in T B, (P and regular in corresponds an equivalence class

of solutions F (x, xu) of the equation F = 0 which have the essential

support 5;;; all the solutions in the given class are obtained from one

of them by adding to it any solution which is bounded ~~ 
in the whole half-space xo ~ 0.
We next want to point out the following geometrical fact which

appeared in the course of the proof of (ii) - (i) : the interior of each
region is a natural domain of holomorphy (2:B) in C’z, since it is bounded

(22) For this kind of results see for instance the papers by B. Malgrange : Le 
rème de preparation and Whitney’s theorem [15]. _

(23) We recall that a natural domain of holomorphy (or " holomorphy domain ")
in C" is a domain D such that there exists at least one function f which is defined

and analytic in D and cannot be analytically continued across any part of the

boundary of D [11] ; for n ~ 2, this property is not true for an arbitrary domain

in Cn.
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by the analytic hypersurface [10] with equation

Therefore any connected component of the intersection of all these

domains is also a holomorphy domain. As we saw, one of these compo-
nents coincides with the local tube if (and only if) B is convex.

So we have proved :

THEOREM. - A necessary and sufficient condition for a local tube 
to be a holomorphy domain (23) is that its basis B be convex.

Let us now consider a local tube whose basis B is not convex.

Any function ((p) which is analytic in TB, J) and regular in has an
admissible extension whose associated kernels F~ (x, xo, p) have their
essential support in SB.
But in view of the proof that (ii) implies (i), the inverse formula (37)

defines f (p) as an analytic function in the local tube Tg , whose basis B
is the (open) convex hull of B. So we have proved :

THEOREM. - The holomorphy envelope [11] of a local tube ( for the.
class of functions which are holomorphic in and regular in T B, (p)
is the local tube T, , whose basis B is the convex hull o f B.

This theorem is a generalization of the " tube theorem 
" which we

already quoted in section 2.
ime are now finished with what we wanted to present here about the

generalized Laplace transform method but before we go to its appli-
cation to the edge of the wedge theorem in section 7, we want to add
a few words about certain features of our problem which we omitted
to study here..
As it was announced at the end of the introduction these features

will be fully developed in a coming paper [1] and are the following.
Extensions of the generalized Laplace transform to the case when

the boundary value of f (p) on the real is no more regular can be given;
one will be able to give a version in the case when these boundary values
are distributions and another one in the most general case of hyper-
f unctions. One will also get rid of the regularity condition in the
theorem about the holomorphy envelope of a local tube 
We also hope that this method will make simpler some aspects of the

theory of hyperfunctions [4] and will have some connections with the
problems considered by Hormander in [16].

Finally we also reserve for [1] (although it is a very simple conse-
quence of what has been done in the present section) the proof of a
Cauchy-Fantappie integral representation for the functions which are
analytic in a local tube and regular in its closure.
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7. THE GENERALIZED EDGE-OF-THE-WEDGE THEOREM

The " edge-of-the-wedge 
" 

problems are generalizations to the theory
of functions of several complex variables of the following simple result
in one variable.

If two functions fl (z), f2 (z) are analytic respectively in the upper
and lower half planes and have boundary values which coincide on a
certain open interval Q, then there exists a single analytic function f12 (z)
which coincides with fi and f2 in their respective domains and is analytic
,at all the points of Q.

In the space Cn an analogous theorem has been proved by using
standard methods of several complex variables theory (such as the disk
theorem). It is known under the traditional name of the " edge-of-
the-wedge " theorem and various versions of it have been presented
about ten years ago by various physicists (24).

It turns out that the introduction of local tubes allows to state a very
neat version of this theorem, which we are going to present now. Our

proof is made very simple by using the results of section 6 and this
method allows a generalization of the theorem which we present
afterwards.

In all the following, we consider functions f; (p) which are analytic
respectively in local tubes and we assume for simplicity that they
.are infinitely differentiable in the closures of the domains is

a given localizing function in an open set Q (the same for all the consi-
,dered local tubes) and we are mainly interested in the case when 03A9
belongs to the boundary of each of the domains (" wedge " situa-
-tions). Each Bi is assumed to be convex.

One also introduces for any couple (i, j) the local tube whose

basis Bij is the convex hull of the union of Bi and B j.
In the (usual) edge-of-the-wedge theorem, one is concerned with two

functions respectively analytic in the local tubes T Bt,.p and 
The statement is the following : if fi and f2 have the same boundary

value f (~) on the (closed, real) set Q, then there exists an analytic func-
-tion f12 (p) which coincides with fl (resp. f2) in the domain 

(resp. T B2, (1)), which is analytic in the local tube and is regular
in its closure [it therefore coincides with f (~) in Q].

(2.í) For complete references, see Streater and Wightman [13]. The most general
o{)f these versions and the closest to the one which we prove here has been given by
Epstein [17].
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Remarks :

(i) This theorem can be considered as a refined version of the theorem
on the holomorphy envelope of a local tube (see the end of section 6);
and since is in general larger than the union of and Tn!h 4&#x3E; ,
it really provides a common analytic continuation f12 for the couple (fh f2).
This clearly shows why this theorem is not trivial as soon as the number
of variables is larger than one.

(ii) Two geometrical situations can be distinguished (see fig. 6).

If B, and (- B2) intersect each other, B12 contains the origin and
therefore the points of Q are points of analyticity for (This is
typically the case when Bi = - B2.)

If Bi and (- B2) have an empty intersection, then B1,2 does not
contain the origin and the points of Q remain boundary points for fl,2.

Proof. - In the case when are respectively replaced by
two tubes T"2 and the open set 03A9 by Rn, a very intuitive proof
can be given through using the Laplace transform theorem of section 2.
The proof that we give for the general cases of local tubes is based

on the same idea and makes use of the generalized Laplace transform
theorem of section 6.
The proof goes as follows : one chooses an arbitrary admissible C °°-exten-

sion of f (c) (see section 6) and then one considers its F03A6-transform F (x, xo)
and the associated kernels Fk (x, xo, p).

Since f (~) is the boundary value of f1 (p) [resp. f2 (p)], these kernels
have their essential support in (x, xo)-space inside S~1 [resp. S82]. There-
fore their actual essential support is the intersection of SRi and SB2.
We notice now that the intersection of the bases B1 and B2 of SB1

and SB2 in the hyperplane = 1 is in fact the polar set of B12 and the
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edge-of-the-wedge theorem is then simply obtained through the equi-
valence theorem of section 6.

For the sake of rigour, we note that the following fact is used in the
end of the argument : two analytic functions in a common local tube TB a
which have the same boundary values on the real domain Q are iden-
tical in (this can be proved easily by taking one-dimensional sections
and applying the " Schwarz symmetry principle ").
The idea of the generalized edge-of-the-wedge theorem which we shall

now present is issued both from considerations of quantum field theory
[where some special problems of boundary values occur (2;»)], and from
the cohomological scheme of the theory of hyperfunctions (~’) by
Sato [4]. We shall state this theorem as follows :

THEOREM. - Let fi (p) ... fl (p) be I functions analytic respectively
in local tubes (i = 1, ..., l) and regular in the closures o f these
domains.

I f their boundary values fi (~) in Q satisfy the condition

then there exists a sel of functions (p) (i, j = 1, 2, ..., I; i ~ j) with
the following properties :

a. for every couple (i, j), (p) is analytic in the local tube and

regular in its closure;
b.

.Remark :

(i) The edge-of-the-wedge theorem is reobtained as the special case
I = 2 [one just has to change /2 into - /2 to transform the relation (43)
into the coincidence condition /B of the edge of the wedge theorem].

(25) This was realized in the course of a collaboration of one of the authors (J. B.)
with H. Epstein, V. Glaser and R. Stora.

(26) Here one has to emphasize the fundamental role played by J. Lascoux and
B. Malgrange to make these concepts accessible to the mathematical physicist.
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(ii) Applying the above corollary of the edge-of-the-wedge theorem
l

to the function f~ (p) (p), one sees that formula (44) also holds
1

for p complex inside the local tube But we notice that the right

hand side of this equation is analytic in the domain n which

is in general larger than (see fig. 7). Therefore the generalized
edge-of-the-wedge theorem implies in general the existence of analytic
continuation for each function f~.

Fig. 7. - has been represented hatched and is clearly larger than Bi.

Proof of the theorem. - In the case of tubes TBi (i. e. Q = Rn), it was
here again recognized several years ago (27) that the Laplace transform
theorem was a simple tool to prove this property.
We shall use similarly the F03A6-transform and reobtain the case 03A9 = Rn

as a special case, since all the results of section 6 remain valid in the
limit   0.

Our first step will be to show that in Q it is possible to write

where each function is analytic in and regular in 
To this purpose we consider for 1 1 the ~-transforms F~~~ (x, xo)

of admissible C~-extensions of fj (03BE) and all the associated kernels FV)

(:!7) In particular by V. Glaser [5]. An alternative proof of the tube version was
also given by A. Martineau [6] who indicates that his method can still be used in the
local case.
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introduced by formula (20). Obviously these C "-extensions of the
functions fj (ç) can be performed in such a way that the relation (43)
holds everywhere in ~-space [for instance, one chooses the extensions
of f2, ..., fn and then defines the extension of fl through formula (43)].
Let us now rewrite the condition (43) under the form

which implies the following identities in (r, xo) space (where
k = 0, 1,..., n) :

In view of the analyticity properties of the functions f (p) ... f! (p),
the essential support of the right-hand side of (47) is contained in the
union of the sets Snj for all values of j such that 2 while the
left-hand side of (47) has its essential support contained in S"1. So the
actual essential support of all the functions F~’’ (x, xo) is the (non convex)
cone

The integral (21) which allows to re-express f ~ (p) in terms of the
n + 1 associated kernels F~ (x, xo) can then be performed on the

boundary ~’ 1 of the set (48). But if one considers the covering of ~~ 1
by the closed sets SB1 n SBj, it is always possible to make a partition (28)
of 03A3 into I - 1 piece in such a way that each piece 03A31j be contained
in the boundary of the convex cone For we

define the function as the restriction of the integral (21) to the
surface Then the geometrical study made in section 6 shows that f1~
is analytic in the local tube and regular in its closure, and we
thus have made our first step which was the decomposition (46).

Similarly each function fi has an analogous decomposition. However
the second step to perform is the proof that the functions of all these

decompositions can always be constructed in order to satisfy the anti-
symmetry relations (45).

This will be done by using a recurrent procedure which we owe to R.
Stora [18]. The theorem is true for I = 2 (edge-of-the-wedge theorem)
and we suppose it holds for (1 - 1) functions fz.

(28) With a certain degree of arbitrariness which we shall not analyze here.
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In the case of l functions fi (~) we first write

as described above. 
’

We then define the functions fjl = 2014 ~ (49) and the I - 1 functions

which satisfy, in view of (48’) :

Since f1j (p) is analytic in (which contains and regular
in its closure, g j is analytic in and regular in its closure. So the

(1 - 1 ) functions fulfill all the properties which allow to apply our
recurrent assumption, and we can thus write

with

Putting together the formulae (52), (49), (50), we obtain :

which achieves our proof, since all the functions 

satisfy the antisymmetry relations (49) and (53).
As a final remark, we must emphasize that all these results, as those

of section 6, could have been presented under more general assump-
tions concerning the boundary values of the functions fi (p); one could
have taken distributions, or more generally hyperfunctions. There is

no essential new difficulty in doing this and it will be done in the already
announced forth-coming paper [1].

Moreover, our method allows to handle without new difficulty the
special configurations where the local tubes are no longer open
sets in Cn, but open sets in lower-dimensional linear manifolds : one
thus reobtains theorems of the same kind as the Malgrange-Zerner
theorem or " flattened tube theorem " [9] (this will also be done in [1]).

Note added in proof. - Since the first publication of this work in 1971,
some applications of it to quantum Field Theory have already been
achieved and published : see J. BROS, H. EPSTEIN and V. GLASER,
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Helv. Phys. Acta., vol. 45, 1972, p. 149; see also J. BROS and D.
IAGOLNITzER in Proceedings of the 1972 Moscow International Conf. on
ivath. Melhods in Q. F. T. and quantum Statistics. Concerning the appli-
cations to S-matrix theory, see also the book by D. IAGOLNITzER :
.Introduction to S-matrix theory.
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