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Service de Physique théorique,
Centre d’FEtudes nucléaires de Saclay,
B. P. n° 2, 91190 Gif-sur-Yvette

ABSTRACT. — In many physical schemes, the fundamental link between
causality and analyticity is the well-known Laplace transform theorem
which states the equivalence between the support properties of a distri-
bution and the corresponding analyticity properties of its Fourier-
Laplace transform in certain complex domains, called “ tubes *’, which
are invariant under real translation.

It turns out, however, that in a number of important physical situa-
tions, one is concerned with analyticity properties in more general
domains and, on the other hand, the expression of causality can take
more refined forms.

In this paper, we present a generalization of the Laplace transform
theorem which uses a non-linear Fourier transform and which exhibits
the equivalence between local analyticity properties and the corres-
ponding ¢ essential-support ” properties of the transformed functions.

A certain class of complex domains which we call ¢ local tubes * is
especially suited to the formulation of this theorem. Using these tools,
we also give a new and simple approach to the ¢ edge-of-the-wedge ”’
theorem. This approach allows to solve a more general problem of

(*) Invited paper at the Goéteborg, Symposium on Mathematical Problems in
Particle Physics (June 1971) and at the Marseille Meeting on Renormalization Theory
(June 1971).
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148 J. BROS AND D. IAGOLNITZER

boundary values of analytic functions. (We shall call this result the
generalized ‘¢ edge-of-the-wedge > theorem.)

Further papers will be devoted to the physical applications of these
various mathematical results, in particular, to quantum field theory
and to S-matrix theory.

NOTE

The mathematical study given in this paper will be completed and
developed in a coming paper which includes the collaboration of
R. Stora [1].

Some of the basic mathematical ideas which are at the origin of the
generalized Laplace transform theorem have been inspired by a previous
work by H. P. Stapp and one of the present authors (D. I.) ]2]. where
applications to S-matrix theory have already been given. The use of
a generalized Fourier transform to describe local analyticity there origi-
nated in the physical necessity of considering sequences of gaussian
type wave packets with widths shrinking under space-time dilation.
This physical necessity was first emphasized by M. Froissart and
R. Omnes [3].

The mathematical part of this work which concerns the edge-of-the-
wedge properties was on the other hand made possible by a previous
maturation of this problem which was the result of several years of
collaboration between various physicists and mathematicians such as
H. Epstein, V. Glaser, J. Lascoux, B. Malgrange, A. Martineau, R. Stora,
M. Zerper and one of the present authors (J. B.).

In particular, J. Lascoux and B. Malgrange played a fundamental
role in showing how the edge-of-the-wedge problems were connected
with the theory of hyperfunctions by Sato [4], thus leading to a deeper
and more general insight of these problems.

On the other hand, a version of the ‘ generalized edge-of-the-wedge
theorem ” has already been proved in certain special cases by H. Epstein
and V. Glaser [5] and A. Martineau has proposed a general proof [6]
which uses a completely different method from ours. (We will not
try here to study the link between these two methods.)

INTRODUCTION

In the fifteen last years the role played by analyticity properties in
elementary particle physics has so much increased that analyticity has
become a sort of dynamical principle in itself [7], while its links with
traditional physical ideas such as causality had not yet been fully
understood.
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CAUSALITY AND LOCAL ANALYTICITY : MATHEMATICAL STUDY 149

In some problems of classical physics, the link between causality and
analyticity was clearly exhibited through the well-known Laplace trans-
form theorem, using the fact that the causal character of a physical
quantity is then generally expressed as a certain support property in
space time.

As a simple example, consider a one-dimensional kernel K ({ — )
where f and ¢ are time variables and which transforms an  input ”

wave signal ¢ (f') into an “ output ”’ signal ¢ (f) = f K{—t)yo)dl;

K is causal if ¢ there is not output before input > which is equivalent
to saying that K (f) vanishes for ¢ < 0.

The Fourier transform variable v = 2—&;—1 of the time wvariable £ is
interpreted as a frequency, and through the above mentioned Laplace
transform theorem, the causal character of K (f) is equivalent to the

+
fact that its frequency spectrum K (») = f et K (f) dt is the boundary

value of a function which is analytic for complexe values of w in the
upper half plane (Im » > 0). In classical optics, a very similar situa-
tion occurs in the description of the scattering of light by atoms [8]
where, due to the propagation of the light wave along the z-axis, the

variable f has to be replaced by ¢ — %; the analyticity of the kernel R (w)

is then the basis, through the use of a Cauchy integral, of the Kramers-
Kronig ¢ dispersion relation . (This is the context in which this
expression appears historically for the first time.)

We notice moreover that if a condition of ¢ short range relaxation ”
on the above kernel K (f), such as | K ()| < C e for £ > 0, is added
to the expression of causality, then the kernel K (») can be analytically
continued across the real region Im w = 0, until the value Im o = a.

In quantum physics, and in particular in the theory of elementary
>

particles, the frequency v and the wave vector k are respectively iden-

tified (up to the Planck constant h) with the energy p, () and the

momentum p of a particle, and the analogue of the kernel K (w) 8 (= — w’)
[which is the Fourier transform of K (! — #') with respect to ¢ and #']
is now the set of « scattering kernels ”’ S, »_.» (P1s - -5 Pim3 Pmtts «+ s Pn)

() In all the following we take the usual choice of wunits in which

B=

5= = 1 so that p, is now identical with the variable w = 2 v,
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150 J. BROS AND D. IAGOLNITZER

where the four-momenta p; of the incoming (1 =i = m) and outgoing
(m + 1 =i < n) particles are restricted to the * mass shell >’ manifold :

Di, = w; = (5 2+ ml?)l/ *and satisfy the law of conservation 2 pi= E Pj.

i=1 J=m—+1

<One has in fact more precisely

Sm,n—m (Pu cves Pms o v ey pn)

= 'S‘m,n_m (Pis ««os Pm3 ««vs Pn) O <Zpt~ —2 p,~>>.

i=1 m—+1

In the framework of general quantum field theory, the analyticity

properties of the kernels S, ,_,, have also been investigated, in particular
those of the S, , scattering amplitudes [9] and some of these properties
have again the form of ¢ dispersion relations ”. In this derivation,
analyticity still originates in taking into account certain support pro-
perties through the (several variable) Laplace transform theorem; in
fact the microcausality of the theory is expressed by introducing certain
Green’s functions of the fields with a ¢ retarded ”’ or < advanced ™ propa-
gation character which amounts to localization of the space-time variables
in (future or past) light cones. However a new pliysical input also
plays an important role in the development of this program, namely
the principle of positive total energy put in a relativistic form in the
so called *“ spectral condition ”’, and the exploitation of this condition
together with causality leads to very intricate problems of analytic
completion.

So the analyticity properties of the kernels S, ,_,, and the complex
domains where they are defined are still related with causal properties
in space-time but this relation is there much more sophisticated than
in the above mentioned problems and has not yet been fully studied (?).

The philosophy of this paper is twofold :

On the mathematical side we present a method which allows to solve
a certain class of problems of analytic completion and which will lead
to some applications in the program of Quantum Field Theory that we
have just described above.

(*) This accounts for the fact that in the theory of elementary particles many
physicists [7] have preferred to set “ maximal *’ analyticity properties, such as the
¢ Mandelstam representation ’ as a working assumption. This can be considered
as a new and attractive approach to physical intuition but we emphasize that it is
not true today to state that this point of view is equivalent with an intuition based
on space time causality and quantum relativistic requirements.
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CAUSALITY AND LOCAL ANALYTICITY : MATHEMATICAL STUDY 151

On the other hand this method should allow to interpret a large class
of analyticity properties of the S, »_. kernels or of the Green’s functions
of field theory in terms of ‘ causality *’ properties in space-time where
we now use the word ¢ causality ”’ in a much broader sense than above,
since it should include the notions of short range forces, of resonance,
the role of probability conservation expressed through unitarity, etc.

The latter point of view was expressed for the first time (°) by
R. Omnes [3] who treated the problem of the equivalence between
« momentum-transfer analyticity ~’ and a “* short-range-force hypothesis
in a pure S-matrix framework.

More general results of this kind were then obtained by H. P. Stapp
and one of the present authors (D. I) [2] and led to the present mathe-
matical study. However the exact shapes of the domains of analy-
ticity (surrounding the real physical regions) were not studied precisely
there, and certain notions such as the distinction between analyticity
in the so-called ¢ physical sheet ”” and analytic continuation into other
sheets (across certain real regions) might still deserve further and more
detailed investigations in terms of the above concepts formulated in
space-time (*).

In the present paper, we try to give a general mathematical basis
to the study of the links between analyticity and causality (in a broad
sense). In various physical schemes these general results will allow to
characterize in terms of ¢ essential support > (°) properties the fact
that certain fundamental kernels are analytic in bounded complex
domains which contain suitable real regions £ (but not the whole real
region). We shall call this kind of property ¢ local analyticity .

In fact this important feature appears conjointly in general quantum
field theory and in pure S-matrix theory (the real regions £ are then
subsets of the so called ¢ physical regions ); and although the first
theory is working with ¢ off mass shell ”’ quantities (the Green’s functions)
while the other one only uses the “ on shell ” scattering amplitudes,
the meaning of local analyticity in both theories can now hopefully
be understood in a unified way as various applications of the same mathe-
matical theorem. This theorem which is a generalization of the Laplace
transform theorem establishes equivalence between the fact that a
function f (p) is locally analytic and a property of exponential decrease
for a suitable quantity which is a generalized non linear Fourier trans-

(®) In this connection we must also quote the pioneer work by G. Wanders [10].

(*) Investigations of this kind will extend the simple result mentioned before on
the analytic continuation of the kernel K (w) across the whole real region, but the
problems become here much more intricate, because in particular of the unavoidable
occurence of branch points (* threshold singularities ’’) on the real.

(®) This term will be made precise in the following.
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152 J. BROS AND D. IAGOLNITZER

form of f(p). Compared with the Laplace transform theorem which
has been mentioned above, this generalization presents two important
features :

a. The introduction of a non linear Fourier transform is necessary
to describe analyticity in local domains, while the ordinary Fourier
transform can only be used for a too restrictive class of domains : those
which are invariant by real translation (i. e. ¢ tubes ).

b. The exponential fall-off properties of the transformed quantities
-outside a suitable ¢ essential support ” generalize the strict support
properties, and will be physically interpreted as a refined expression of
-causality. (This feature can already occur mathematically with the
ordinary Fourier transform, but it becomes crucial in the description
-of local analyticity.)

The physical applications of these results will be given in further
papers. In particular one of the theorems which is proved here (a gene-
ralized version of the * edge-of-the-wedge ” theorem) will be a useful
tool in the program of field theory (see note added in proof).

In order to describe the contents of this paper, let us first of all fix
-some notations. We consider two n-dimensional spaces (z-space and
E-space) with the Fourier transformation defined by

n
2

1) f@=@n)

where

f@ et d:

T= (T ..., Tn),

E. = (Eb LR En)’

t.x =2£,~ z;.

"The variables x will always be taken real while § will also be complexified;
‘when it is complex, it is noted p = ¢ + i n with

and

pz(pl’---’pn), EZ(E“...,E")
.and
i =(Y)l; LIRS ) T)n).

In v-space we shall often use the polar coordinates » = pw where p = | n |
.and o is a point on the (n — 1)-dimensional unit sphere.

The domains which generalize in several complex variables the upper
‘half-plane n, = Im p, > 0, or strips a << n, < b, are called “ fubes ” [11].
In the space G* of n complex variables p, =& +in;(1 <Li<n), a
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tube Tj is defined as the set of all points p such that » = Im p belongs
to a given domain (*) B; B is a domain in the n-real dimensional n-space
and is called the basis of the tube Tg. (The tube Ty thus defined is
clearly invariant by real translations, since there is no restriction on
the values of £ = Re p.) We shall also use the closures of B and Ty

which will be denoted respectively B and T, (more generally D will
denote the closure of the open set D).

In section 1, we recall the usual Laplace transform theorem in its
simplest form : equivalence between support properties of a function f @)

in a convex cone and analyticity of its Laplace transform f (¢ + i)
in a suitable tube with conical basis.

Section 2 will describe the extension (well-known for mathemati-
cians) of this theorem to the case of tubes with more general (possibly
bounded) bases B; there the support property in z-space is replaced
by a condition of exponential decrease outside a suitable domain B
which will be called ¢ essential support .

A general class of bounded complex domains in p-space will be intro-
duced in section 3; they will be called * local tubes ”’ and defined with
help of a ¢ localizing ” analytic function ® (p). Ordinary tubes are
reobtained as a limiting case (® (p) — 0).

In section 4 we define a generalized Fourier transform ¢ in which
the linear exponent — i%.x of formula (1) is replaced by a non linear
function of £, involving the function @ of the class introduced in section 3.

In section 5, the Parseval and inversion formulae of the Fourier trans-
formation are generalized to the case of the transformation 7.

This allows to prove in section 6 a generalized Laplace-transform
theorem which states the equivalence between analyticity of functions
in a local tube with localizing function ®, and essential support pro-
perties of the F¢ transforms.

In section 7, we show how this theorem allows to obtain a very precise
and intuitive presentation of the * edge-of-the-wedge theorem * and
to prove a generalized version of this theorem.

We finally wish to point out that this paper has been written as far
as possible in the language of classical mathematics in order to be acces-
sible to the physicist; in the same spirit we have voluntarily neglected
certain mathematical features or developments of our results which
we prefer to reserve for another paper [1]; the latter will be presented
more specifically to be read by mathematicians.

(°) i. e. a connected open set.

ANNALES DE L’INSTITUT HENRI POINCARE 11



154 . J. BROS AND D. TAGOLNITZER

1. THE LAPLACE TRANSFORM THEOREM
‘ FOR A TUBE WITH CONICAL BASIS

Being given a cone C with apex at the origin in v-space, we shall
associate with C a closed cone C in z-space which is the set of all points =
such that n.z> 0 for all points » in C (fig. 1); we shall call C, the
““ dual cone > of C.

It can be verified that the dual E of C, taken now in n-space, is the,
closed convex hull of C.

Fig. 1

We now recall the classical Laplace transform theorem [12] which

we first state for simplicity in the case when f (p) [and f (x)] are infini-
tely differentiable functions which decrease rapidly (") at infinity as

well as all their derivatives (according to Schwartz’s notations [12]
we say that f and f belong to the space s).

For such functions f and f, the two following properties are equivalent :

@) f ) is the boundary value of a function f(( + iv) analytic in a
tube T, where C is a convex open cone.

f (p) is moreover infinitely differentiable in the closure of T and has
a rapid (°) decrease at infinity in this region.

(ii) f(x) has its support in the dual cone C of C.

The proof that (ii) implies (i) is easily obtained by writing the inverse
Fourier formula :

@ e =en e i@

(") By rapid decrease at infinity we always mean that there exists for every posi-

. . . Cn
- in real directions, or N

tive integer N a bound of the form ——>—— _—
a+ep A+lel+ )

in complex directions.
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and investigating the convergence conditions of the right-hand side
when £ is replaced by £ 4 i 7 (¥).

The proof that (i) implies (ii) is obtained by replacing the integration
contour of formula (1) (i. e. the real ?-space) by the set of all £ 4 in
with a fixed v taken inside the cone C (this is allowed because f is ana-
Iytic in T¢).

Since | | can be chosen arbitrarily large, the contour can be moved
to infinity as soon as n.z < 0. This proves the vanishing of f(z)

outside C.
In the above argument it appeared that

F@=—1 [ etmrftinds

(2 T,_.)E ne

this is equivalent to saying that f(z) e is the Fourier transform
of the function f, () = f (£ + i n) for all points 7 inside C (°).

This remark allows to define the correspondence between f (p) and f @)
in the more general case when f(p) has not necessarily a limit in the
usual sense on the boundary of T, and can in fact have an arbitrary
behaviour near this boundary.

It is useful in many physical contexts to consider situations in which
the notion of a « boundary value > in the sense of tempered disiributions
can be defined ([6], [13]).

One says that a function f (p) analytic in T admits a tempered distri-
bution f, as its boundary value on the real :-space if for all test func-
tions ¢ (7)) in 8, one has

fogy=1m [fE+in)g @) ds

when n — 0 inside the cone C.

It has been proved that this condition is equivalent [13] to the fact
that | f (p) | is bounded by a fixed inverse power of | | (with polynomially
increasing coefficients in ?) when v tends to zero.

More generally, we say that a function analytic in T, (or in any domain)
is slowly increasing in this domain if | f (p) | is bounded by a polynomial
in | p | at infinity and by an inverse power of the distance to the boundary
of T¢, when p comes close to this boundary.

(") The rapid decrease properties of f (p) at infinity inside T are obtained by repea-
ting the argument for all the functions (— ip)™ f (p) which are the Fourier transforms
" f ()
0f dx'"
(°) The Fourier transform can also be considered in cases when f., ) is no longer

integrable, but for instance has a polynomial increase at infinity; f (x) then becomes
a tempered distribution.
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156 J. BROS AND D. IAGOLNITZER

It is then interesting for the application to quantum field theory
to quote the following version of the Laplace transform theorem in the

case when f (x) is no longer a function but a tempered distribution.
There is equivalence between the two properties :

(i) fis a tempered distribution in z-space with support C.
() f ¢ + im) is analytic and slowly increasing in the tube T, and

its boundary value f, on the real admits f as its Fourier transform in
the sense of tempered distributions.

2. THE LAPLACE TRANSFORM THEOREM
FOR MORE GENERAL TUBES

In the following the tube Ty is always chosen such that the closure
of its basis B in »-space contains the origin ('°). Moreover we shall
assume for simplicity that B is * star-shaped > with respect to the origin :
we mean here that B can be described in polar coordinates v = (p, w)
by an inequality o < r (w).

The function r (») can have finite or infinite values and is not neces-
sarily continuous everywhere, but lower continuity is required.

When the origin lies on the boundary of B, we shall say that we have
a “ wedge situation ”’; in this case r (w) has a certain support which
is the intersection of the unit sphere with a (connected) cone Cg.

If one takes care of excluding the origin in the case of wedge situation,
the sets B that we just described are open sets.

With the basis B we associate in z-space its polar set B, defined as
the intersection of all half-spaces with equations

T.0 —I—%éO,

for all points n = (p, w) in B; B is a closed convex set.

Remarks :
(i) If B is a bounded set, the origin in x-space lies in the interior

of B, whereas it lies on its boundary if r (») can take infinite values.
An example of the latter case occurs in section 1, where the basis B

is the cone C and B is identical with the dual cone  of C.
(i) If B is in a wedge situation [with support of r (») in a cone Cy],

then B is unbounded and admits as an asymptotic cone the dual cone Cy
of Cp (see fig. 2).

(**) The case when the closure of B does not contain the origin could be treated
in a similar way, but it is without interest in the framework of this paper.
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(iii) For any set B, the convex envelope B of B has the same polal'
set B as B.

We now introduce the notion of  essential support ” in x-space :
we shall say that a function f () admits B as its essential support if it
satisfies for every z ouifside B an exponential bound of the type :

®3) I f(x) | < G, e Blxin—e)
for every ¢ > 0.

In this inequality, 3 (x) is a positive and possibly infinite quantity
which is defined as follows : for every z, we call £ the (unique) point

Fig. 2

on the boundary & of B which lies on the segment joining z to the origin;
ka8
|2 |

The level surfaces of the function B (x) are clearly obtained from J
by dilation with respect to the origin and for that reason we shall also
call 5 the “ indicatriz of decrease >’ of the function f.

then we put 3 (x) =

Remark. — If J contains the origin where it admits a tangent cone,
then 8 (z) becomes infinite when x is outside this cone, and therefore f ()
vanishes in this region. The case considered in section 1 gives an
example of this situation.

For any tube Ty with open convex basis B, the Laplace transform
theorem now displays a correspondence ('') between the functions
f( + i n) which are analytic in p-space in the tube Ty (and sufficiently

(*') Rigorous statements of equivalence of this kind can be obtained if one pres-
cribes the exact functional spaces to which the boundary values of f (¢ + i n) belong
(on the various parts of the boundary of Tg) and correspondingly more refined
decrease properties of f(x).
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158 J. BROS AND D. IAGOLNITZER

decreasing at infinity) and functions f(z) in z-space which have B as
their essential support.

As it has been described in section 1, the correspondence between f

and f is still defined by saying that [ () e~"= is the Fourier transform
of the function f (¢) = f (¢ + i) where this is true now for all points =
in B.

The idea of the proof is then the following : starting from the analy-
ticity of fin Ty, the relevant exponential bounds (3) on f (z) are obtained
by optimizing on all #’s in B the boundedness condition for the product
f(x) e "> (The case of section 1 is reobtained by this procedure);
here again the converse is proved by investigating the convergence

condition of the integral f f (x) ez de,

Remark. — The Laplace transform theorem gives a direct proof of
the following well-known fube theorem [11] : any function f which is ana-
Iytic in a tube T, with arbitrary basis B (and sufficiently regular at
infinity) can be analytically continued in the tube T; whose basis B is
the convex envelope of B. In fact the argument which allows to prove
that the essential support B of f is the polar set of B still holds when B
is not convex; since B and B have the same polar set, any function f

analytic in Ty corresponds to an f(x) with essential support B= (ﬁ),
and by the converse of the above theorem f is also analytic in Tj.

3. LOCAL TUBES

In sections 1 and 2, we have described classes of functions which are
analytic in tubes; we shall now introduce more general complex domains
which include tubes as a limit case; we will call them ¢ local tubes .

A local tube will be defined by means of two elements.

(i) A bounded domain B in an n-dimensional real space which we
assume for simplicity to be described as in section 2 by an inequality
p < r(w).

Here again B will be called the basis of the local tube.

(ii) An analytic function ® (p) with the following propertics :

a. ® (p) = ® (p) for any p in the domain of ®.

b. The set of all real points £ which satisfy 0 = @ (1) < 1 is an open
bounded set £ whose closure is compact inside the analyticity domain
of @ (in complex p-space).

c. The origin 7 =0 belongs to Q and is a critical point for

-

® (V ® (0) = 0); moreover we assume for simplicity that ® has no

VOLUME A-XVIII — 1973 — N° 2
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other critical point (i?) inside @ so that the set of level surfaces
@ (5) =c(0=c=1) is topologically equivalent to the set of nested

spheres with equations Z £? = c; in particular @ (¢) = 0 implies ¢ = 0.
i—=1

The simplest example of a function @ which we shall sometimes refer
to is in fact the function ® (£) = ¢ =2 £7.

i=1
Let us now consider the set & of points p =% 4 in (with v = [ 7| )
in the domain of analyticity of @ such that :

@ 10|+ 1@ Re®E+in)—1) <0,

We notice that the open set @ always belong to & [|n| =0 implies
® () < 1 since r (») # 0].

If the connected component of & which contains € is bounded and
has a compact closure inside the domain of ®, we define the local tube Ty, ¢
as the interior of this component.

A more technical restriction on the domains Ty ¢ which we consider
will be imposed in the last part of this section.

In the unbounded case one can also derive results which are similar
to those described below, but since we are only concerned here with
possible applications to local problems, we will restrict ourselves to the
case of bounded local tubes.

The only real points which belong to the closure of Ty g are those
of Q and that is why we say that ® is a « localizing function ™ in the
open set Q; Q plays the same role for Ty ¢ as the whole real Z-space
for a tube T;. However, we note that B and Q are not sufficient to
specify the domain Ty, ¢ since a large family of functions ® are localizing
in the same open set €.

Remark. — By putting ® =0 in equation (4), one reobtains the
equation of the tube Ty of section 2. In fact if ® () (= 0) is analytic
on the whole real i-space, then the family of local tubes Ty e with 2
real, satisfies the inclusion property Ty @ < Ty @ for all 2 >2’, and
when % tends to zero, Ty e tends to the tube Tp.

As in section 2, we will consider two cases according to whether B
contains the origin or only admits it as a boundary point.

In the former case, Q is contained in Ty ¢, whereas in the latter case
it only lies on its boundary; we thus have again a * wedge situation ",
Ty, ¢ is contained in the tube whose basis is the cone Cp (see section 2).

(*2) More general situations could also be considered but would not bring essen-
tially new features.
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160 J. BROS AND D. IAGOLNITZER

The shape of the sets & and Ty g in an arbitrary imaginary direc-
tion w is typically illustrated by taking the following one-dimensional
example where @ (p) = p*; { r () |} is a set of two numbers r,, r_, Q is
the interval — 1 <: < 1 and the set & is defined by the equations :

G E —— 1) <0 (10),
—n+r_@E—w—1)<0  (n=0).

The situation in the upper half-plane is represented on figure 3; two
cases occur :

(i) The region & is connected but unbounded for r. > %

(i) for r. < % the region & is disconnected and Ty ¢ only corresponds

to its lower part.

In order to generalize this intuitive picture to the case of an arbi-
trary localizing function @, we need to introduce the following notions.
Being given a localizing function ®, one can associate with every
point (p, w) in R* (%), the n real-dimensional manifold fp,,, in C* which
is defined by the equations :

n=|n|o,

5
© b G ) =[n|+pRe® ¢+ in) — 1) = 0.

For any fixed direction », and any sufficiently small value of o> 0,

one shows that this manifold fp,,, contains a connected bounded compo-
nent which has the same boundary as Q; we shall call this component
the cycle (**) I';,,. All the cycles I, (with o fixed) are contained in
the (n + 1) dimensional manifold p =%, + Aw, where 2 is a complex
variable and £; denotes a set of (n — 1) real variables in the hyperplane
orthogonal to w; now we shall say that a cycle I'.. is admissible if for
any fixed value of ¢,, its section in the A-plane has no critical point
and can be obtained through a continuous distortion of cycles |
with 0 =< p" =~ ¢ (starting from the section of £ on the real axis, when p’
starts from 0).

One can show that a cycle I';,, is admissible provided that at all the
points of I'cw, and of all cycles Tpr, with 0 0" < p the derivatives
®.Vedy (¢ n) and .V, 4y (5, n) do not vanish simultaneously; this
is clearly fulfilled for p small enough, but for any given , there is a
critical value p = ry, () such that the cycle I';,,, ceases to be admissible
at this value.

(**) p, w are the polar coordinates of this point.
(**) In the sense of * relative cycle modulo the boundary of @ ”.
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Using the property a of ®, one can easily show that :
©® 0Vl Gn) — 0.V G = — i+ .V, (),

and what we have to keep in mind is that on all admissible cycles I';,,
(0 <p <rg (v)) the complex valued vector (6) does not vanish; om

each limit cycle p = rg (») it vanishes at least once.

7 N
0

e ~
Fig. 3

We shall define the admissible set By associated with ® as the set of
all points p, w in R such that the cycle T' 0, be admissible; By obviously
contains the origin and is given in polar coordinates by the formula -

Oép < rq, ((JJ).
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The introduction of the cycles I'; ,, allows the following alternative
definition for a ¢ local tube ” Ty g : Ty, ¢ is the union of the cycles T';
associated with all the points (p, ») in the basis B.

In the following, we shall always impose that the basis B has a compact
closure inside the admissible set Bo; this means that TB,‘I, is a union
of cycles I'y, which are all admissible and implies that the modulus of
the complex vector (6) has a strictly positive lower bound in the tube Ty ¢.
This property will reveal crucial for the argument given in section 6.

4. A CLASS
OF NON LINEAR FOURIER TRANSFORMATIONS Fg

Being given an analytic function ® with the properties described
in section 3, we shall associate with every distribution f(£) suitably
chosen a generalized Fourier transform F (z, x,) in the n 4 1 dimensional
real space of the variables x = (z,, ..., x,) and z, by the formula :

0 F @ o) =0 (f) = —— [t tenf@)d
@)

To be more precise, we consider a bounded connected closed set Q (%)
which contains the closure of  in its interior (2 c c ) and such that

the function ® is defined and analytic at all points of €.
We then consider the class of distributions f(¢) which have their

support in &, and denote by Eq the class of their Fourier transforms :

¥ 1 S
fo=—1s [erroe
2n)? f

f(x) is an entire function which is polynomially bounded on real z-space.
Then for any fixed value of xz,, F (z, x,) is the Fourier transform of
) e®®* and therefore also belongs to E,.

An alternative way of considering the transformation F¢ is obtained
by imbedding the real :-space into the n - 1-real dimensional space
of the wvariables (f =%, ..., £,; z) and introducing the closed piece
of analytic manifold o which is the set of all points (£, z) such that
z = ® (f) with £ in Q.

We then see that Fg is the ordinary n 4+ 1 dimensional Fourier-
Laplace transformation for distributions with support ot and which

(**) Be careful that here the notation ~ does not mean the convex closure.
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have the form f(3) 5 (z — @ (¢)) in a neighborhood of o :

®) F(z, x) = ! n f efrm f () 0 (z — @ () dn & dz.
(2 7)?

Let us now introduce the (possibly infinite-order) differential operator

d)(i £> defined for every function § (x) in the class EQ by

9) (I)<ia%>§(x)=5 @) (@
=L fergprod
@n)*

Since ® (?) is differentiable at all points of ©Q, ® ¢ is again a distri-

bution with support @ and @(i%)ﬁ(x) is therefore a well-defined

function in the class EQ.

With this definition, we immediately see on formula (7) or (8) that
F (z, ) is a solution of the equation

J

J .
(10) Dy F (@ 3 = (5 + (i 33 ) ) F@ ) = .

We emphasize that the operator ()—Z + @(i% > will only be here

considered as acting on differentiable functions of z and x, which (for any
value of z,) belong to the class E, (in the variables x); this operator is

thus canonically associated with the set ot and therefore denoted by D.,,.

If @ is a polynomial of degree m, (10) reduces to an ordinary partial
differential equation of order m (with constant coefficients); in the
typical case where ® = :2, (10) is the heat equation. In the general
case, the essential properties of this parabolic equation still hold true.
In particular, the solution F (r, x,) with Cauchy data F (z, 0) = @)
is uniquely determined by formula (7).

5. THE CLOSED DIFFERENTIAL FORM W (F, G)
AND THE GENERAL PARSEVAL
AND INVERSION FORMULAE FOR Fo

Let us consider for a moment the case when f (¢) is a (differentiable)
function. Then f can be recovered from its transform F (z, z,) by using
the inverse Fourier formula :

an 16 =—_ent [ e F @ 2 du,

2n):?
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where the right hand side integral can be performed equivalently on
any hyperplane x, = const.

In the next section we will need an extension of this inversion formula
in which the integration will be performed on a more general hyper-
surface X of the (z, x,)-space and which will be valid provided that
F (z, ,) has special decrease properties.

We shall now present this type of extension in its natural framework
which is the Parseval formula.

In fact, the inverse Fourier formula can be considered as a special
case of the Parseval formula :

(12) [O@iwe=[io0r0

since the latter is valid for any couple (f, g) in duality : by taking
gE) =0E —E&) =0, Le J@=

L -¢~%* one reobtains the
@y

inverse Fourier formula.

The extension that we give was inspired by a result which concerns
the Klein-Gordon equation and is well-known in relativistic quantum
physics. We mean the following form of Parseval formula :

a3 GO @)@ —myap
_ iﬁ‘,:m &% [G(x, ) (—F(x, z >
~ (%8G CEN
=if22dap(x)[6(x)ml:(x)— <di6( ))F(x)],
- _ .

for functions f (p) and ¢ (p) in duality.

In this formula, the first integral represents the (Lorentz invariant)
scalar product on the mass shell hyperboloid H,, and F (z), G (x) are
the associated solutions of the Klein-Gordon equation.

In the third term, the integrand is a closed differential form W and
in view of Stokes theorem ('*) its integral on the (space-like) hyper-
surface X is independent of X (for suitable decrease properties of F
and G at infinity).

(*%) f W= f dW where 0Q is the boundary of Q.
0Q Q
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In the present case, we similarly consider a couple of functions f (z),
g @ inE 5 which are in duality and for which we have the usual Parseval

formula (12).

Let F (z, x,) and G (z, z,) be the solutions of the equation (10) with
respective Cauchy data f(z), ¢ (x) on the hyperplane z, = 0. Then
we are able to construct a differential form W (F, G) of degree n in the
[(n + 1)-dimensional] (z, x,)-space such that :

(i) W (F, G) is closed (dW = 0).

(i) The restriction of W (F, G) to any hyperplane x, = const. is of
the form :

F (z, 1) G (x, — z,)) dT, A - . . A\ dx,

[which reduces to f(z) (§) () dx.A ... Adx, when z, = 0].

In view of Stokes theorem, we therefore obtain that, for couples of
solutions (F, G) having suitable decrease properties at infinity, the
following generalized form of Parseval formula [analogous to (13)] holds :

(19) [10r0E=[WE ),

for a certain class of admissible hypersurfaces X.

If we take for f a regular function f(£) and for ¢ (¢) the measure o:,
then G is equal to e-%**~® (= and the formula (14) gives an inversion
of formula (7) under the following general form

(15) (2 “);f(ﬁ) :ﬁw (F, e~fio—® (),

Let us now give the expression of the differential form W (F, G);
we first introduce n differentiable functions p; (£, £) of 2 n variables
by the identity

(16) D) —@E) = G —E) e E).

k=1

The existence of such functions is ensured [14] if ® is differentiable.
Moreover if @ is analytic in a natural domain A, g, is analytic in A XA;
[for A we can take here the domain of all points p =% + in such that
Re® (p) <1+ ¢].

We note that the functions p; (¢, £) are good multipliers for the distri-

butions f () g (¢") whose support lies in AxO (since Q is contained in A).
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Therefore it is meaningful to define the action of an operator noted

. 0 , =
Ok <l oz ldix,> on the product F (z, 2,) G (z', — x,) by the formula

0 0 .
a7) pk<z% - la?>F(x, 2 G @, — )

= (2 7")" e—iGa—5a ) — (D (Z) 2P (£) ) 0k (E’ El) f(’:) 7 (E,,’) d: dé'.

We now put
o N e (s 000
18) W (F, G)_[z;( 1) pk<ldx7 i)
=1

x F(z, )G (&, — )

x =a
Xo=a¢

X dx, A\ de, A ..o\ @k/\.../\dx,l]

+F@ )G @ —x)d, A...\ dz,

AN
where the notation dz; indicates that this factor is omitted.
In order to verify that W is closed, we just compute

~ [ 0 0 0 .0 2 0
w0 =[5 )l 1) (3 2|
k=1
x F(x, z,)G (@, — ) ‘:1 de, \dx, )\ ...\ dx,.

ry=aty

To show that the coefficient of dx, A ... A dx, vanishes we just note
that it is the generalized F¢ x5 transform (restricted at z = 2,
x, = x,) of

[ M- a6 — (@ — @ (i’))J 03 E),

which is equal to zero in view of equation (16).
Writing now formula (18) in the case when

G (z, ) = e==P%x  (for a given value of £)
we obtain :

(19) W (F, e-it==P@)2)

= { etbr+P (i, [2 (— 1DfFr(z, 2o, E)daxy A - . . A {l;:k Ao A dxn]

k=0
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where we have put

r 1 1 - it (P (E -
@)  R@un=—— [a6 @t o
@ry
For k = 0 we give a meaning to this equation by putting o, (, £') = — i
in such a way that by formula (7) we have F, (z, ,, £) = — i F (z, Zy)-

We notice that formula (20) defines F; not only for z’ real, but for
any p’ = £’ + i’ in the complex domain A where ® and p; are analytic.
Therefore F; is also an analytic function of p’ in A for all values of x
and z,.

By putting the expression (19) into formula (15) we obtain for appro-
priate classes of hypersurfaces X the general inversion formulae for & :

@) @nPfeE) = if elie+ P (B)a,

X[ 2(—1)"Fk(x, x,, 'g)dxo/\.../\c/l;k/\.../\dxn].

k=0
Remarks :

(i) When @ is a polynomial, the kernels F; can be chosen to be poly-
nomials in £, whose coefficients are finite combinations of derivatives
of F (x, z,) [as in our pedagogical example (13)].

(ii) The construction of the differential form W (F, G) depends on
the set of functions p; which is not uniquely defermined (*"); in fact W (F, G)
is defined up to an exact differential form (whose integral on X is equal
to zero). This point will be developed in [1].

6. THE GENERALIZED LAPLACE-TRANSFORM THEOREM
FOR LOCAL TUBES

We shall now use the transformation ¢ of section 4 to represent
the functions which are analytic in a local fube Ty ¢ by means of solu-
tions F (z, z,) of the equation (10) which have exponential decrease
properties outside a certain essential support.

In section 2, we had introduced in z-space the polar set B of B; B
was the essential support of every function whose Laplace transform
was analytic in the tube Ty with basis B. Similarly we shall now
associate with the basis B of a local tube Ty ¢ a set S; in (x, x,)-space
which will again play the role of ‘* essential support ” : Sy is the convex

(") We are indebted to Dr. Briining who pointed out this fact to one of us.
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«cone with apex at the origin in (z, x,)-space whose basis is the set of

points zeB, z, = 1; for convenience this basis will still be denoted B.

An example of a set S; is exhibited on figure 4 with the same set B
.as in figure 2.

Finally, it will be useful to introduce also polar coordinates in (z, z,)
space; we shall put

Ty =Uy T,

T =ur,

where ©=r[(z, x)] =V2* £z} and » = (u, u,) is a point on the
unit sphere in (z, ,) space; we shall call  indicatriz associated with B »’

Fig. 4

‘the intersection of the boundary dS; of Sy with this unit sphere and
we shall denote it Jy. For every point v = (u, u,) on J; we note that
there exists a point p, » on the boundary of B (i. e. p = r (»)) such that
4y = — 1 (») u.»; and since B has been taken bounded, we have (for all
points of Jy) the inequality

‘(22) U é T'max | u |s

‘with r,.x = sup, r (»).

Given an analytic function ® which is a localizing function in a real
open set Q in f-space, we now choose once for all a closed bounded
set Q as in section 4 (Qc c Q).

We will here consider functions f (t) which are infinitely differentiable
.and have their supports in Q. (We shall say that f belongs to the

space @p.) With such a function the transformation ¢ associates a
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function F (z, x,) [see formula (7)] which is solution of equation (10) :
D, F(z, ) =0,

where we recall that D,; is completely determined by the set
M:z==® (), 2. Moreover one can easily check that F (z, o)
is bounded in the whole half-space x, > 0, and that for every fixed
Z, > 0 it is rapidly decreasing in |z |.

We shall now consider the class of functions f in (g Whose restriction
to the open set € is the boundary value of a function which is analytic
in a local tube Ty ¢; for simplicity we still denote by f (¢ + i+) this
analytic function [at the points £ of &, f(¢) is analytic in the only case
when the basis B contains the origin; if not, we are in a wedge situation
and f (¢) is only the boundary value of f (£ -+ i )]

We shall now prove that the F¢-transform of any function f in this
class admits Sy as its essential support and conversely.

More precisely one can state the following equivalence theorem which
we present with a certain specification of regularity conditions on the
boundary of Tp ¢ :

THeEOREM. — There is equivalence befween the two following properties :

(i) The function f (%) belongs to @5 and its restriction to  is the boundary
value of a function f (¢ + in) which is analytic in a local tube Ty ¢
with convex basis B; moreover f(; + im) exlends to an infinitely differen-
tiable function defined on the whole closure of Ty g (Ty g is compact
in A={p,Re®(p) <1+¢}).

(ii) The Fg-transform F (z, x,) belongs to 'S, for every fized value of x,,

and all the associated kernels Fi (x, %, £) (0 < k < n) defined by equa-
tion (20) salisfy the following bounds

C; .
(23) | Fi (@, @, p) | < 5 +VT—~ )
at all points (x, x,) of the half-space x, > 0 which lie outside Sy (or on ils
boundary) and for all values of p in A.
These bounds hold for all positive integers N and the constants Cy are
independent of x, x, and p when these variables vary in the above domains.

a. Proof that (i) implies (ii). — As a first step we shall establish the

majorization formula (23) without the rapid decrease factor i _}1_ 5
T
To this purpose, we rewrite the integral formula (20) (with £’ replaced
(**) We recall that ©=r<[(z, x,)] = \/:1:'z + x3.
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by p’ =E£' + in') under the following form

(24) 2 n) Fx (z, x0, p') = F} (x, xo, p') + F} (x, o, P)

with

(25) FL@ 2o p) = [ [0 6 p)ettind,

(26) F (z, 2, p') = f [€) o € p) et Ondy
Ce

(here GSZ is the complementary set of Q in real E—space).

Since @ (f) > 1 outside @ and ® is regular in the support & of f,
the integral (26) is trivially bounded in modulus by C” e~ in the whole
half space x, > 0; the constant C” is given by

C'=psuwpf@I  swp 1l P)]-Vg

PP Ep, pr €A

where V,  is the volume of the integration set Q.

We now concentrate on the integral (25); in order to derive an expo-
nential bound e—* for this quantity, it is crucial to use the analyticity
of f(p) [and of pi (p, p')] in the domain Ty ¢. In fact this will allow
to make a suitable distortion of the integration contour Q inside Ty, o,
before majorizing the integrand of formula (25).

Here we shall use the fact that Ty o is a union of admissible cycles Iy, ,,
and the definition of an admissible cycle given at the end of section 3.

As we have done there, we restrict ourselves to the manifold p =¢; + Aw
and use the analyticity of f(p) in the complex variable A for any fixed
value of ;. Then the definition of admissible cycles allows us to

distort © into any cycle T, , contained in Ts,e and to write, for any
point (p, ») in B :

@n & (@ o, P) =fF f (p) px (p» p') P21z d, p.
(3

By using the formulae (5) it is easy to see that for any point pinT,,,:

X
I e—ir=—® (pj=, I — e——z.,+|m(w.x+3°).
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Therefore in the whole closed half-space H,, of (z, x,) space with
equation

(28) wrt+ 20

p

we obtain the majorization
(29) | F: (x, o, p) | < C' e,
where we have put

(30) C'=V sup [f()]. sup o, )]

G X pp Eppred
and V is the upper bound of the volumes of all cycles I',,, in Ty .
But in view of the definitions of Sy and of the polar B of B (see section 3)
we notice that the union of the half spaces H,, associated with all

points (p, w) in B covers precisely the closure of the complementary set
of Sy in (x, x,) space.
Putting together the majorizations for | F;| and | F,| we obtain

(31) ] Fk (x! Lo, p’) I é Co e—-’”n,

where C, = L —sup (C’, C”), this bound being valid in the closure
@my
of the complementary set of Sy inside the half space x, > 0; and for
all values of p’ in in A.
In order to derive the majorization formulae (23) for all successive
values of the integer N we shall integrate the expression of F; (z, x,, p)

by part and use the properties of analyticity (and regularity at the
boundary) of the successive derivatives of f(p) [and of ® (p)] in Ty, .
Let us start with the following expression of F; :

() @rFFi@wp)=[ £ ®) px (. ) =202 d, p

(Co)or

where we have put together the expressions (26) and (27) of F} and F,
respectively (I';, being any admissible cycle).

Choosing an arbitrary direction «,, we can always rewrite (32) as
follows

(33) 2 w)g Fi (x, 2, p')

f(p) e« (p, P')
cour, TR G G R
?ll.l

. Vp (ripx—Q (/)).ro)
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and provided that the denominator of the integrand does not vanish
on the integration contour, partial integration is allowed and yields

(34) @) Fi (@, 20 p)

— 7 f(p) Pk (p’ p’) ) —ip.o—P x

“f d"pmi'v"<iml.x+(wl.Vp(D(p))xo)'e PR
cuur?w

- dop .V,
7 [(x, 0)] Cour

f(p) Pk (p’ p’) —ipa—DP (pja
X(iﬁ)l.u—"'ﬁ)l.VpQ(p)uO).e : .

We shall below divide the set of points (u, u, > 0) of the unit sphere
which lie outside Sy (or on its boundary) into two parts and show that
in each of them o, can be chosen such that the denominator
iw.u+ (0.9, ®(p)u, never vanishes and has a uniform lower bound
in modulus.

The argument which led to the majorization (31) of F; can then be
identically applied to the integral of the right hand side of (34) and
therefore will yield the bound (23) for N = 1. By an obvious recursion
over N one would obtain similarly all the bounds of the formula (23).

We first consider the set of points (u, u,) which satisfy an inequality
u, > ¢ for a given strictly positive number :.

For any fixed point (z, 2,) outside Sy or on its boundary there always
exists at least one point (p, ») in B such that the point (z, x,) belongs
to the boundary of the half space H, defined in formula (28), i.e.
we have

(35) Ty = — pw.T

so that
U, = — pw. U
We choose to integrate (34) precisely on the contour I'y, <U[}SZ>

associated with this point (p, ») and moreover we choose », = w. Then,
in view of (35) the denominator i »,.u + (»,.V, ® (p)) u, can be written

(36) Pt (@.V, ® () Uy = — %“(i — ow.V, ® (D).

Now we recall as it was observed at the end of section 3 that the
vector i — pw.V, ® (p) [see (6)] certainly does not vanish on the admis-
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sible cycle I, ,; it obviously does not vanish either on the contour GSZ

since V, ® (p) is real there.

A uniform lower bound of the modulus of (36) easily follows since
Uy >z

We next consider the set of points (u, 0 =~ u, = 2).

The quantity (»,.V,® (p)) u, is then bounded in modulus by
¢ max |V, ® (p)| independently of «, If ¢ is chosen sufficiently

PETy,
small, it is thus always possible to find [for every value of v = (u, w,)]
a direction «, such that i w,.u 4+ (»,.V, @ (p)) u, does not vanish and
has a uniform lower bound. We take for instance o, in the direction
of u.

Since u® + u? = 1 one obtains immediately :

lio.u+ (. .V, ®@)u|>1—:)?—: max |V, O (p)]

ya ETB,‘I)

> 0 (for = small enough).

b. Proof that (ii) implies (i). — Conversely we shall now show that the
bounds (23) allow to prove that f (¢) is the boundary value in £ of a
function f(p) which is analytic in Ty ¢ and regular on its boundary.
[The fact that f () is infinitely differentiable on the real simply comes
from the rapid fall off of F(zx, 0).]

To this purpose we first show that as a consequence of the bounds (23)
the boundary dS; of the cone S; is an admissible surface X in equa-
tion (21) when  is inside .

We recall that in view of Stokes’ theorem and of the fact that the
differential form W is closed, the difference between the integrals of W
on the hyperplane z, = 0 and on the surface dS; is the limit when
R — oo of the integral of W on the surface defined by the conditions
|z | = R, 2z, >0 and (z, x,) in the complementary set of Szg. An example
of such a surface is shown in figure 5 (with the cone Sy of figure 4).

But in view of the bounds (23) (where t can be replaced by | x| = R)
the integral on this surface is bounded in modulus by the following
expression

R

C "max
o [ eren,
0

In the integral over z,, the upper bound R r,. is a consequence of
the fact that all the points of the integration surface satisfy the bound
0 =% < rux|z| in view of formula (22) (see also fig. 5).
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This quantity clearly tends to zero when R — oo if N is chosen large
enough, since ® (f) = 1 in Q; therefore the expression (21) of f(¥) is
valid when one takes dS; for the integration surface 2.

We now show that this integral defines a function which is analytic
in the local tube Ty ¢, infinitely differentiable on its boundary, and
coincides on Q with the function f(:). We shall still call this func-
tion f(p).

Fig. 5

We use the polar coordinates 7, v = (u, w,) in (z, x,) space that we
have already introduced, and we consider f (p) as defined by the following
integral ('°) :

n

en 1@=[ 3=y

'/JB k=0 =
1k
N N
X(— Y wdu, \ ... Ndu N Adug A ...\ du, X1 (0, p, p)
where
+ ®
(38) L@ p )= [ o Fu v, p) o s
0

[here we have used the notation F (z, v, p’) for F; (z (7, ), 2. (7, ), POl

n

(**) Which reduces to (2 7:)'? f(2) when p is real in Q (in view of eq. (21).
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The bound (23) (which is still valid on dS;) allows to obtain :

n—1i

(39) |+ Fx (z, v, P’ et lip . u+® (pyuy | < CNﬁ'—N eT(=Nu+Re® (p)—1)uo),
- T

In order to prove the absolute convergence of the integrand in equa-
tion (38) at a given point p€A and for a given value of v on Jy, it is
thus clearly sufficient to verify that

(40) —nu4+ Re®(p)—1)u, <0,

since N can be taken arbitrarily large.
With the given point v, let us associate the half space m, defined as
the set of all points (p, w) which satisty the inequality

(41) wu+%é&

Then taking the equation (5) into account we notice that the set &,
of points p where (40) is satisfied is exactly the union of all the mani-

folds T, associated with all the points (p, w) in the half space m,
(see section 3).

The factor — n u + (Re @ (p) — 1) u, stays strictly negative when p
is in the interior of ®, and can vanish on its boundary. This imme-
diately implies that I; (v, p, p) is an analytic function of p inside R, NA
and is continuous on its boundary and moreover that its bound is inde-
pendent of ». [The regularity of all the derivatives of I; on the boun-
dary of ®, would be proved in exactly the same way since these deri-
vatives have expressions which are completely similar to the
equation (37).]

According to equation (37), I(p) is an integral of the functions
L (v, p, p) over the points v in the indicatrix J5. Since this indicatrix
is compact and the functions I; are uniformly bounded in v, I(p) is
regular at all points p which lie in the intersection of all the sets R,
when v varies over J,, and it is analytic in the interior of this region.

Since the intersection of all half-spaces , is the polar of B,i.e. B (),
the closed local tube TBy(p = U I, . thus belongs to the intersection Y

p,weB
of all the regions ®,, therefore we have proved that f(p) is analytic in
the local tube Ty ¢ and regular in its closure.

(*) In view of the convexity of B.
() More precisely, it is a connected component of this intersection, the whole

intersection being ‘ \ T
pwEB
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We shall now use the theorem which we have just proved to give a
characterization of the functions f(p) which are analytic in a local
tube Ty ¢ and regular in its closure :

For every such f(p), the boundary value of f () on the real set Q
always admits extensions to the whole f-space which are infinitely
differentiable and have their supports in ; this is because the closed
set © has a sufficiently regular boundary (32).

Such an extension of f (%) will be called admissible, and in view of
the above theorem, any admissible extension of f has an Fg-transform

F (x, z,) and associated kernels F; (z, x,, p) whose essential support
is the cone S;.

If we now consider two admissible extensions of f(p) we have

fi(® —f.(¢) =0 on Q and therefore their Fy-transforms and asso-
ciated kernels F{!', F{» satisfy the following bounds

(42) | F @ 20, p) — Fi @ 20, P) | < 7= + N

for all points z, in the half space x, > 0.

[To show this, we apply the argument given for majorizing the expres-
sion (26).]

Conversely one shows that every solution of the equation Dy F =0
which is bounded by e—* in the half space x, > 0 is the F¢-transform
of a function f which vanishes in & : to see this, one notices that for 2
n Q the inverse Fgp-formula can be applied when one chooses the inte-
gration surface to be any plane &, = C > 0; then letting C tend to infi-
nity, we see that such an integral is necessarily equal to zero.

So it is proved that to all the admissible extensions of any function f (p)
analytic in Tg e and regular in Ty ¢ corresponds an equivalence class
of solutions F (z, x,) of the equation D, F = 0 which have the essential
support S;; all the solutions in the given class are obtained from one

e~

of them by adding to it any solution which is bounded by -(i;— —
in the whole half-space x, >. 0.

We next want to point out the following geometrical fact which
appeared in the course of the proof of (ii)— (i) : the interior of each

region R, is a natural domain of holomorphy (**) in C”, since it is bounded

(**) For this kind of results see for instance the papers by B. Malgrange : Le théo-
réme de préparation and Whitney’s theorem [15].

(**) We recall that a natural domain of holomorphy (or ¢ holomorphy domain *’)
in G is a domain D such that there exists at least one function f which is defined
and analytic in D and cannot be analytically continued across any part of the
boundary of D [11]; for n > 2, this property is not true for an arbitrary domain
in G~
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by the analytic hypersurface [10] with equation
Re (ipu + (@ (p) — D) u,) = 0.

Therefore any connected component of the intersection of all these
domains is also a holomorphy domain. As we saw, one of these compo-
nents coincides with the local tube Ty @ if (and only if) B is convex.

So we have proved :

THEOREM. — A necessary and sufficient condition for a local tube Ty o
fo be a holomorphy domain (**) is that ils basis B be convex.

Let us now consider a local tube Ty ¢ whose basis B is not convex.

Any function f(p) which is analytic in Ty ¢ and regular in Ty ¢ has an
admissible extension whose associated kernels F, (z, x,, p) have their
essential support in Sg.

But in view of the proof that (ii) implies (i), the inverse formula (37)
defines f (p) as an analytic function in the local tube Tg ¢ whose basis B
is the (open) convex hull of B. So we have proved :

THEOREM. — The holomorphy envelope [11] of a local tube Ty o (for the
class of functions which are holomorphic in Ty e and regular in Ty o)

is the local tube Ty 3 whose basis B is the convex hull of B.

This theorem is a generalization of the ¢ tube theorem * which we
already quoted in section 2.

We are now finished with what we wanted to present here about the:
generalized Laplace transform method but before we go to its appli-
cation to the edge of the wedge theorem in section 7, we want to add
a few words about certain features of our problem which we omitted
to study here.

As it was announced at the end of the introduction these features
will be fully developed in a coming paper [1] and are the following.

Extensions of the generalized Laplace transform to the case when
the boundary value of f(p) on the real is no more regular can be given;
one will be able to give a version in the case when these boundary values
are distributions and another cne in the most general case of hyper-
functions. One will also get rid of the regularity condition in the
theorem about the holomorphy envelope of a local tube Ty, .

We also hope that this method will make simpler some aspects of the
theory of hyperfunctions [4] and will have some connections with the
problems considered by Hoérmander in [16].

Finally we also reserve for [1] (although it is a very simple conse-
quence of what has been done in the present section) the proof of a
Cauchy-Fantappié integral representation for the functions which are
analytic in a local tube Ty ¢ and regular in its closure.
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7. THE GENERALIZED EDGE-OF-THE-WEDGE THEOREM

The ¢ edge-of-the-wedge ” problems are generalizations to the theory
of functions of several complex variables of the following simple result
in one variable.

If two functions f (2), f: (z) are analytic respectively in the upper
and lower half planes and have boundary values which coincide on a
certain open interval &, then there exists a single analytic function fi. (z)
which coincides with f, and f, in their respective domains and is analytic
at all the points of Q.

In the space G" an analogous theorem has been proved by using
standard methods of several complex variables theory (such as the disk
theorem). It is known under the traditional name of the ¢ edge-of-
the-wedge  theorem and various versions of it have been presented
.about ten years ago by various physicists (*).

It turns out that the introduction of local tubes allows to state a very
neat version of this theorem, which we are going to present now. Our
proof is made very simple by using the results of section 6 and this
method allows a generalization of the theorem which we present
-afterwards.

In all the following, we consider functions f; (p) which are analytic
respectively in local tubes Ty, and we assume for simplicity that they
are infinitely differentiable in the closures of the domains Ty, ¢; ® is
a given localizing function in an open set € (the same for all the consi-
«dered local tubes) and we are mainly interested in the case when Q
belongs to the boundary of each of the domains Ty, ¢ (*“ wedge ” situa-
tions). Each B; is assumed to be convex.

One also introduces for any couple (i, j) the local tube Ty, & whose
basis B;; is the convex hull of the union of B; and B,.

In the (usual) edge-of-the-wedge theorem, one is concerned with two
functions fi, f. respectively analytic in the local tubes Ty ¢ and Ty, ¢.
The statement is the following : if f; and f, have the same boundary

value f (£) on the (closed, real) set £, then there exists an analytic func-
tion fi,(p) which coincides with f, (resp.f.) in the domain Ty, ¢
(resp. Ty, o), which is analytic in the local tube Ty, 3 and is regular
in its closure [it therefore coincides with f (£) in Q.

(**) For complete references, see Streater and Wightman [13]. The most general
.of these versions and the closest to the one which we prove here has been given by
Epstein [17].
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Remarks :

(i) This theorem can be considered as a refined version of the theorem
on the holomorphy envelope of a local tube (see the end of section 6);

and since Ty, ¢ is in general larger than the union of Ty ¢ and Ty, ¢,
it really provides a common analytic continuation f;, for the couple (fi, f.).
This clearly shows why this theorem is not trivial as soon as the number
of variables is larger than one.

(i) Two geometrical situations can be distinguished (see fig. 6).

Fig. 6

If B, and (— B.) intersect each other, B,, contains the origin and
therefore the points of  are points of analyticity for f... (This is
typically the case when B, = — B,.)

If B, and (—B.) have an empty intersection, then B,, does not
contain the origin and the points of © remain boundary points for fie

Proof. — In the case when Ty, ¢, Ty, o are respectively replaced by
two tubes Ty, Ty, and the open set & by Rr, a very intuitive proof
can be given through using the Laplace transform theorem of section 2.

The proof that we give for the general cases of local tubes is based
on the same idea and makes use of the generalized Laplace transform
theorem of section 6.

The proof goes as follows : one chooses an arbitrary admissible C*-exten-
sion of f (Z) (see section 6) and then one considers its #p-transform F (x, )
and the associated kernels F; (z, x,, p).

Since f(z) is the boundary value of f, (p) [resp. f> (p)], these kernels
have their essential support in (z, 2,)-space inside Sy, [resp. Sp,]. There-
fore their actual essential support is the intersection of Sp, and Sg,.

We notice now that the intersection of the bases B, and B, of Sy,
and Sy, in the hyperplane x, = 1 is in fact the polar set of B,, and the
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edge-of-the-wedge theorem is then simply obtained through the equi-
valence theorem of section 6.

For the sake of rigour, we note that the following fact is used in the
end of the argument : two analytic functions in a common local tube Ty ¢
which have the same boundary values on the real domain Q are iden-
tical in Ty, ¢ (this can be proved easily by taking one-dimensional sections
and applying the ¢ Schwarz symmetry principle ).

The idea of the generalized edge-of-the-wedge theorem which we shall
now present is issued both from considerations of quantum field theory
[where some special problems of boundary values occur (**)], and from
the cohomological scheme of the theory of hyperfunctions (*') by
Sato [4]. We shall state this theorem as follows :

TueorREM. — Let f,(p) ... fi (p) be l functions analytic respectively
in local tubes Ty,o (i=1, ..., ) and reqular in the closures of these
domains.

If their boundary values f; £) in Q satisfy the condition
{
(43) M) =0
i=1

then there exists a set of functions f;; (p) (i,j=1,2, ..., 1; i %)) with
the following properties :

a. for every couple (i, j), fi; (p) is analytic in the local tube Ty, ¢ and
regular in its closure;

b.
l
(44) fi© =21 ) (for every & in Q);
=t
C.
(45) fiy (0) = — f;: () (for every p in Ty, ).
Remarks :

(i) The edge-of-the-wedge theorem is reobtained as the special case
I = 2 [one just has to change [, into — f. to transform the relation (43)
into the coincidence condition f; = [, of the edge of the wedge theorem].

(>*) This was realized in the course of a collaboration of one of the authors (J. B.)
with H. Epstein, V. Glaser and R. Stora.

(**) Here one has to emphasize the fundamental role played by J. Lascoux and
B. Malgrange to make these concepts accessible to the mathematical physicist.
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(ii) Applying the above corollary of the edge-of-the-wedge theorem
!

to the function f; (p) —Z fi; (p), one sees that formula (44) also holds
j=1

for p complex inside the local tube Ty, . But we notice that the right
hand side of this equation is analytic in the domain m Ty, which

12«1

i#i
is in general larger than Ty o (see fig. 7). Therefore the generalized
edge-of-the-wedge theorem implies in general the existence of analylic

continuation for each function f.

Fig. 7. — B,,nB,, has been represented hatched and is clearly larger than B,.

Proof of the theorem. — In the case of tubes Ty, (i. e. & = R?), it was
here again recognized several years ago (*") that the Laplace transform
theorem was a simple tool to prove this property.

We shall use similarly the F¢-transform and reobtain the case @ = R»
as a special case, since all the results of section 6 remain valid in the
limit ® — 0.

Our first step will be to show that in Q it is possible to write

l
(46) fi @ =1, ©
j=2
where each function f,; is analytic in Ty, ¢ and regular in TB”.,q).

To this purpose we consider for 1 = j =l the Fg-transforms F/ (z, x,)
of admissible C*-extensions of f; (£) and all the associated kernels F{’

(*) In particular by V. Glaser [5]. An alternative proof of the tube version was
also given by A. Martineau [6] who indicates that his method can still be used in the
local case.
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introduced by formula (20). Obviously these C”-extensions of the
functions f; (£) can be performed in such a way that the relation (43)
holds everywhere in -space [for instance, one chooses the extensions
of f,, ..., f» and then defines the extension of f, through formula (43)].
Let us now rewrite the condition (43) under the form

l
L6 =-210,

2

which implies the following identities in (z, z,) space (where
k=0,1,...,n):

!
47 F (2, 2) = — 3 FY (=, z).

j=2

In view of the analyticity properties of the functions f, (p) ... fi (p),
the essential support of the right-hand side of (47) is contained in the
union of the sets Sy, for all values of j such that 2 —j 1, while the
left-hand side of (47) has its essential support contained in S;. So the
actual essential support of all the functions F}’ (z, z,) is the (non convex)
cone

l l
(48) Sy, N < U sB,> = U (S, Sg)).

j=2

The integral (21) which allows to re-express f, (p) in terms of the
n 4+ 1 associated kernels F{’(x, z,) can then be performed on the
boundary X, of the set (48). But if one considers the covering of X,
by the closed sets S; N Su,, it is always possible to make a partition (2%)
of X, into I — 1 piece X,; in such a way that each piece X,; be contained
in the boundary of the convex cone SB,nSni. For 2 <j <1, we
define the function fi; as the restriction of the integral (21) to the
surface 2,;. Then the geometrical study made in section 6 shows that f;;
is analytic in the local tube Ty, ¢ and regular in its closure, and we
thus have made our first step which was the decomposition (46).

Similarly each function f; has an analogous decomposition. However
the second step to perform is the proof that the functions f;; of all these
decompositions can always be constructed in order to satisfy the anti-
symmetry relations (45).

This will be done by using a recurrent procedure which we owe to R.
Stora [18]. The theorem is true for I = 2 (edge-of-the-wedge theorem)
and we suppose it holds for (I — 1) functions f;.

(*®) With a certain degree of arbitrariness which we shall not analyze here.
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In the case of I functions f; () we first write

l
(48" fi=Xfi
as described above. =
We then define the functions f;, = — f,; (49) and the [ — 1 functions
(50) gi=f/'+fi/ (j=2:"~sl)

which satisfy, in view of (48) :

l l
1) g =f=0.

j=2

Since fi; (p) is analytic in Ty, (which contains Ty, ) and regular
in its closure, g, is analytic in Ty, and regular in its closure. So the
(I — 1) functions g, fulfill all the properties which allow to apply our
recurrent assumption, and we can thus write

(52) g;= Z fir for j=2,...,1

kZj

k=2, ..., 1

with
(53) fio= — fir
Putting together the formulae (52), (49), (50), we obtain :
(4 fr= 2 fx for 1=Zj=1

kF£]

12kzl

which achieves our proof, since all the functions f; (1 <=j=k<1)
satisfy the antisymmetry relations (49) and (53).

As a final remark, we must emphasize that all these results, as those
of section 6, could have been presented under more general assump-
tions concerning the boundary values of the functions f; (p); one could
have taken distributions, or more generally hyperfunctions. There is
no essential new difficulty in doing this and it will be done in the already
announced forth-coming paper [1].

Moreover, our method allows to handle without new difficulty the
special configurations where the local tubes Ty, & are no longer open
sets in G, but open sets in lower-dimensional linear manifolds : one
thus reobtains theorems of the same kind as the Malgrange-Zerner
theorem or “ flattened tube theorem *’ [9] (this will also be done in [1]).

Note added in proof. — Since the first publication of this work in 1971,
some applications of it to quantum Field Theory have already been
achieved and published : see J. Bros, H. EpsTEIN and V. GLASER,
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Helv. Phys. Acta., vol. 45, 1972, p. 149; see also J. Bros and D.
IacoLNITZER in Proceedings of the 1972 Moscow International Conf. on
Math. Methods in Q. F. T. and quantum Statistics. Concerning the appli-
-cations to S-matrix theory, see also the book by D. IAGOLNITZER :
Introduction to S-mairiz theory.
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