@article{AIHPA_1968__8_2_139_0,
author = {Manuceau, J.},
title = {$C^\ast $-alg\`ebre de relations de commutation},
journal = {Annales de l'institut Henri Poincar\'e. Section A, Physique Th\'eorique},
pages = {139--161},
year = {1968},
publisher = {Gauthier-Villars},
volume = {8},
number = {2},
mrnumber = {225545},
zbl = {0173.29902},
language = {fr},
url = {https://www.numdam.org/item/AIHPA_1968__8_2_139_0/}
}
TY - JOUR AU - Manuceau, J. TI - $C^\ast $-algèbre de relations de commutation JO - Annales de l'institut Henri Poincaré. Section A, Physique Théorique PY - 1968 SP - 139 EP - 161 VL - 8 IS - 2 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPA_1968__8_2_139_0/ LA - fr ID - AIHPA_1968__8_2_139_0 ER -
Manuceau, J. $C^\ast $-algèbre de relations de commutation. Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Tome 8 (1968) no. 2, pp. 139-161. https://www.numdam.org/item/AIHPA_1968__8_2_139_0/
[1] , The C*-algebras of a free boson field. I. Discussion of Basic Facts. Commun. Math. Phys., 1, 1965, 14-18. | Zbl | MR
[2] , Étude de quelques automorphismes de la C*-algèbre du champ de bosons libres. Ann. Inst. Henri Poincaré, 8, 1968, 117-138. | Zbl | MR | Numdam
[3] , Les C*-algèbres et leurs représentations. Gauthier-Villars, 1964, Paris. | Zbl | MR
[4] , Hamiltonian Formalism and the Canonical Commutation Relations in Quantum Field Theory. J. Math. Phys., 1, 1960, 492. | Zbl | MR
[5] , Inductive limit and infinite direct product of operator algebras. Tôhoku Math. J., 7, 1955, 67-86. | Zbl | MR
[6] , Normed Rings. Noordhoff-Groningen, 1959, The Netherlands. | Zbl | MR
[7] , Fondements de l'analyse moderne. Gauthier-Villars, 1963, Paris. | Zbl | MR
[8] , On one-parameter unitary groups in Hilbert space. Annals of Mathematics (2), 33, 1932, 643-648. | Zbl | MR
[9] , and , A theorem on canonical commutation and anticommutation relations. Commun. Math. Phys., 2, 1966, 223-230. | Zbl | MR
[10] , Introduction à l'électrodynamique quantique. Dunod, 1961, Paris. | Zbl | MR
[11] , Die Eindentigkeit der Schrödingerschen Operators. Math. Ann., 104, 1931, 570. | Zbl | JFM






